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ABSTRACT
This paper formally presents four common pitfalls in train-
ing and evaluating recommendation algorithms for informa-
tion systems. Specifically, we show that it could be problem-
atic to separate the server logs into training and test data
for model generation and model evaluation if the training
and the test data are selected improperly. In addition, we
show that click through rate – a common metric to mea-
sure and compare the performance of different recommen-
dation algorithms – may not be a good measurement of prof-
itability – the income a recommendation module brings to a
website. Moreover, we demonstrate that evaluating recom-
mendation revenue may not be a straightforward task as it
first looks. Unfortunately, these pitfalls appeared in many
previous studies on recommender systems and information
systems. We explicitly explain these problems and propose
methods to address them. We conducted experiments to
support our claims. Finally, we review previous papers and
competitions that may suffer from these problems.

1. INTRODUCTION
A recommender system suggests items that may interest a
user. Recommender systems are mostly adopted by the E-
Commerce (EC) providers, such as Amazon [19] and Wal-
mart [14]. Researchers have proposed many recommenda-
tion algorithms from various perspectives, such as leverag-
ing on the text similarity between products, utilizing users’
clicking or purchasing behaviors, or a combination of both.
These methods include Collaborative Filtering, Matrix Fac-
torization, language modeling, and their variations and mixed
versions [16; 19; 21; 22; 24].

To evaluate the proposed recommendation algorithms, re-
searchers have applied or invented assorted metrics, such
as the click through rate (CTR), the Mean Absolute Error
(MAE), Normalized Mean Absolute Error (NMAE), and the
Root Mean Square Error (RMSE) between the predicted
user rating and the true user rating, the Discounted Cumu-
lative Gain (DCG) and Kendall’s Tau of the recommended
item list, and the traditional Information Retrieval metrics
like Precision and Recall [14].

Recommender systems can be applied to various applica-
tion domains, such as movie recommendation [7], music rec-
ommendation [11], collaborator recommendation [8], expert
recommendation [9], etc. Recently, industrial companies
and research labs, such as Criteo, Netflix, and YOOCHOOSE,

have organized recommendation competitions that attract
thousands of participants. Typically, the organizer provides
the datasets for training and locks away the test data for
the final evaluation [6; 7; 15].

Instead of proposing another recommendation algorithm or
evaluation metric, this paper emphasizes on four common
pitfalls of developing and evaluating recommendation mod-
ules for information systems. Probably influenced by the
machine learning, data mining, and information retrieval
fields, the researchers of recommender systems usually split
the available dataset (e.g., the logs of clickstreams) into the
training and the test data, which are used to generate the
recommendation model and evaluate the performance of the
model respectively. Although such a procedure works well
in many machine learning studies and applications, applying
this procedure to recommender systems could be problem-
atic, as we will explain later in this paper. In addition,
the typical evaluation metrics – click through rate – may
be problematic if used carelessly. Unfortunately, many of
these pitfalls appear in previous research papers and com-
petitions, as we will illustrate later. We discuss these issues
and propose possible ways to fix or bypass them in this pa-
per.

The rest of the paper is organized as follows. In Section 2,
we present the typical approach to separate the training and
the test data of the studies on recommender systems. We
discuss two issues of generating and evaluating the recom-
mendation methods in Section 3 and Section 4. In Section 5
and Section 6, we show two issues regarding click through
rate and recommendation revenue. In Section 7, we review
previous works, including (1) the typical recommendation
metrics and (2) previous competitions and publications that
fall into several pitfalls illustrated in this paper. Finally, we
discuss the discoveries and address future work in Section 8.

2. A TYPICAL PROCEDURE OF PREPAR-
ING TRAINING AND TEST DATASETS

Figure 1 shows a possible procedure of generating the train-
ing and the test data when studying recommendation mod-
ules of an information system, e.g., an EC website. Initially,
an EC website probably had no recommendation module.
At a certain time, the engineers of the website decided to
include a recommendation model. To train the model, the
engineers used the available logs to extract (xi, yi) as the
training instance. Here, xi = (xi,1, xi,2, . . . , xi,`) is the con-
text features (i = 1, 2, . . . , n; `: the number of features;
n: the number of training instances). The context features
could be, for example, the user’s gender, location, education,
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Figure 1: An illustration of a possible procedure to generate
the training and the test data for developing and evaluating
recommender systems. The initial online recommendation
algorithm model Rorig is trained based on users’ behaviors in
the “no recommendation” period (from t0 to t1). To train a
new model Rnew and test whether the new recommendation
method is better than Rorig, we split the log data between t1
and t2 into training and test data, as many research papers
and competitions did. Both Rorig and Rnew are trained
based on the training data (the logs between t1 and ts) and
compared based on the test data (the logs between ts and t2)
using the specified metric (e.g., click through rate or order
rate).

annual salary, the current browsing item’s category, price,
color, the current date, the current day of the week, etc. The
yi is the corresponding item that should be recommended
to the user under the context features xi. Since the web-
site has no recommendation module initially, yi could only
be inferred based on intuitions, e.g., a user’s next clicked
or purchased item given xi. During the test (recommenda-
tion) phase, the recommendation module utilizes the given
context features as clues to output the products that may
interest the users.

For example, if the engineers believe that a good recom-
mender system should recommend products that are pop-
ular and related to the current browsing item, they may
propose CategoryTP – recommending the top popular (e.g.,
most viewed) items the in the category c, the current brows-
ing products’ category. In this case, the context feature list
contains only one feature xi,1 whose value is c. To obtain
the top popular items of each category, the view count of
each product during the “no recommendation period” (see
Figure 1) is calculated.

Suppose at another time, the engineers of the EC web-
site proposed another recommendation algorithm Rnew. To
compare Rnew with the original one Rorig, the engineers
split the logs between t1 and t2 (the period where the origi-
nal recommendation module was employed) into the training
data (logs between t1 and ts) and the test data (logs between
ts and t2). The engineers trained Rnew the new model and
re-trained Rorig the original model based on the training
data, and compared their performance based on the test
data using the specified metrics, such as the click through
rate, the recommendation order rate, or the recommenda-
tion revenue.

Many research papers and competitions applied this proce-
dure or similar procedures to generate the training and the
test data, as will be illustrated in Section 7. Unfortunately,

Table 1: The percentage of the clicks resulted from the in-
page direct links. We hide the actual numbers of clicks due
to business sensitivity.

Day Day 1 Day 2

Direct link Percentage 19.3150% 21.2812%

such a training and evaluation procedure is problematic, as
demonstrated in the following sections.

3. ISSUE 1: TRAINED MODEL COULD BE
BIASED TOWARD HIGHLY REACHABLE
PRODUCTS

This section shows that training a recommendation module
based on the logs of the clickstreams may be problematic, if
the training data are poorly selected. We will start by ex-
plaining the problem and proposing possible ways to bypass
the problem. We will conduct experiments to support our
claim.

3.1 The core problem
Many studies or competitions employ the clickstreams as
the training data for the proposed recommendation algo-
rithm [23]. Specifically, given that a user’s current context
feature as xi = (xi,1, xi,2, . . . , xi,`) and a user’s next vis-
ited product as pj , several researchers suggested to treat the
recommendation task as a machine learning task in which
(xi, pj) is a positive training instance. To generate the neg-
ative training instances, one possible approach is randomly
sample a product pk (pk 6= pj) from all products and treat
(xi, pk) as a negative example [12].

If we generate the training dataset by this manner, the dis-
tribution of the training data (xi, pj) is affected by unsta-
ble factors, such as the presentation of the pages. Specifi-
cally, assume that we apply a Markov Chain recommenda-
tion model in which each node represents a product and wi,j

the weight of a directed edge from node i to node j repre-
sents the transition probability from product pi to pj based
on the log of the clickstreams. If the product page of pi
contains manifest direct-links to the product pj , many users
are likely to click pj after browsing pi. Thus, the informa-
tion pi → pj (or more formally, (xi = (xi,1 = pi), pj) as a
positive training instance) may become a strong positive sig-
nal simply because it is extremely easy to reach pj from pi.
Unfortunately, the links included in the product pages are
sometimes decided arbitrarily by few persons, e.g., the mar-
keting executives or the engineers. As a result, the linked
products may be little relevant to the current browsing prod-
uct. For example, EC websites may aggressively exhibit the
sponsored or advertised products, as demonstrated in Fig-
ure 2, even though the sponsored or the advertised products
may not be directly relevant to the browsing product. As a
result, the recommendation algorithms are likely to output
the highly reachable products, which is highly influenced by
the layout of the product pages.

3.2 Selecting proper training data
Based on the discussion above, we can see that a product’s
reachability highly influences the distribution of the train-
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Figure 2: A snapshot of the product page on https://www.walmart.com/. The main product of this page is a prepaid
smartphone. The sponsored products and the list of the advertised products on this page are of little relevance to a smart
phone.

ing data. We illustrate two examples here. First, if we
use the Markov Chain model as the training algorithm, the
learned rules are highly influenced by the “layout” of the
product pages (e.g., which product pages have direct links
to which other product pages). Second, if we use popularity-
based methods (e.g., obtaining the category of the current
browsing product and recommending the top viewed prod-
ucts of the category), the recommendation algorithms are
again likely to recommend the highly reachable products,
such as the products that have many incoming links. Both
cases are undesirable, because once we change the link tar-
gets, the distribution of the training data could be very dif-
ferent, which may lead to a different set of learned rules.

We analyzed the logs on two continuous days of a large
EC website in Southeast Asia1. We found that about 20%
of user clicks are resulted from the in-page direct links, as
demonstrated in Table 1. This suggests that by rearranging
the layout of the pages or the link targets in the pages, ap-
proximately 1/5 of the positive training instances are likely
to be different.

To neutralize the effect that the highly reachable products
are more likely to be treated as the positive training in-
stances, we should weaken the weights of the positive in-
stances in which next clicked product is highly reachable.
In other words, if many product pages have direct links to
the product pj , we should assign a small weight to the pos-
itive training instance (xi, pj). Another possible method is
to include the positive training instance (xi, pj) only when
such a behavior is spontaneous, i.e., such a click was not in-
fluenced by the layout of the page. If we push the idea to
the limit, we may include the information that pi leads to
pj only when 1) the page of pi contains no direct links to pj ,
and 2) the pj is not included in the recommendation list of
the page of pi. Thus, the positive signal that pi → pj is less
likely to be affected by the layouts of the pages.

1Due to business sensitivity, we are not allowed to share the
name of the company.

3.3 Experiment
To support the above claims, we simulated the typical method
to generate the training data and the test data. This section
presents the detailed settings, which is very close to what we
introduced in Section 2. We present and discuss the results
at the end of this section.

3.3.1 Experiment setting
We simulated an EC website that contains 1, 000 products
p0, p1, . . . , p999. Each product is randomly assigned to one
out of the ten product categories c0, c1, . . . , c9. We gener-
ated the similarity score between every pair of the products
by the following rule: if two products pi and pj belong to
different product categories, s(pi, pj) the similarity score be-
tween them is sampled from a uniform distribution between
0.01 and 0.35. Otherwise, we sample s(pi, pj) from a uni-
form distribution between 0.3 and 0.9.

The rest simulation follows the illustration of Figure 1. Ini-
tially (during t0 and t1), the website has no recommendation
module. Each product page (pi) contains direct links to 5

randomly selected products (p
(1)
i , p

(2)
i , . . . , p

(5)
i ), which we

called “promoted products”. We assume that when a user
reads the page of product pi, whether she/he will continue
to view another product follows a Poisson distribution with
a fixed λ. If she/he decides to continue, for 80% of the time
the user would click on the promoted products and 20% of
the time the user would visit a product pj with probability
proportional to s(pi, pj) the similarity between pi and pj .

At t1, the first recommendation module is online. We as-
sume that if a user decides to stay on the site, then for 40%
of the time she/he would click on one of the ten items re-
turned by the online recommender system, 40% of the time
the user would click on the promoted products, and for 20%
of the time she/he would click the next item pj proportional
to the similarity score between pi and pj .

We generated 1,000,000 sessions that browse the products
based on the above rules. We set the initial recommenda-
tion model to a simple approach CategoryTP (Categorical
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Top Popular): when a user is viewing the product pi whose
product category is cj , we recommend the top-10 popular
products in the category cj .

Now suppose we would like to try other recommendation al-
gorithms. To compare the new algorithms with CategoryTP,
we take the logs between t1 and t2 and separate the first
700,000 sessions as the training data and the last 300,000
sessions as the test data. We train each recommendation
module (including the initial recommendation module Cat-
egoryTP) by two types training data: 1) train-all – all the
700,000 training logs, and 2) train-sel – if a user views pi fol-
lowed by pj , the information is included in the training data
only when pj is neither included in the promoted products
nor the recommendation list.

We compared the CategoryTP with the following methods:
(1) TotalTP (Total Top Popular) : obtain the items that are
mostly viewed during the training period and always recom-
mend these items during the test period; (2) MC (Markov
Chain): build a table to record the transition probability
from one product to another during the training period and
make recommendation in the test period based on the table,
i.e., recommendation based on the most likely transferred
product from the current browsing product; (3) ICF-U2I
(Item-based Collaborative Filtering based on the User-to-
Item matrix): during the training period, generate a user-
to-item matrix in which the entry (i, j) represents the num-
ber of times a user i views a product j, and compute the
cosine distance between every pair of the columns (which
represents product features). During the test period, the
algorithm recommends the columns that are most similar
to the current browsing product; (4) ICF-I2I: (Item-based
Collaborative Filtering based on the Item-to-Item matrix):
during the training period, generate an item-to-item matrix
in which the entry (i, j) represents the number of times item
i and item j are viewed by the same user and compute the
cosine distance between every pair of the columns (which
represents product features). During the test period, the
recommendation policy is the same as ICF-U2I, i.e., recom-
mending the columns that are most similar to the current
browsing product; (5) NMF-U2I: during the training period,
generate a user-to-item matrix as explained in ICF-U2I and
perform non-negative matrix factorization on the matrix to
get the hidden vector of each item. Next, the algorithm
calculates the cosine distance between every pair of these
vectors. The recommendation policy during the test period
is the same as ICF-U2I; (6) NMF-I2I: during the training pe-
riod, generate an item-to-item matrix as explained in ICF-
I2I and perform the non-negative matrix factorization on
the matrix, as explained in NMF-U2I. The algorithm calcu-
lates the cosine distance and recommends items based on the
distances during the test period, as explained in NMF-U2I.

3.3.2 Results
We show the average percentage of the promoted products
appearing in the top-10 recommended items given the user
is browsing a specified product. As demonstrated in Table 2,
when using train-all (all the available training data) as the
training data, several algorithms recommend many of the
“promoted products”. As a result, we seem to learn the
“layout” of the product page (i.e., the direct links from pi to
pj) instead of the intrinsic relatedness of between products.
On the other hand, when we only utilize the train-sel (the
data that match the rules specified in Section 3.2) as the

training data, the ratio of the promoted products appearing
in the recommendation list is much lower. In order not to
let the layout of the product pages influence the learned
rules, we probably should use the train-sel as the training
data, or perhaps decrease the weights of the highly reachable
products.

3.4 Lessons learned
The common wisdom that the clickstream represents a user
could be problematic because the clickstreams are highly in-
fluenced by the reachability of the products and the layouts
of the product pages. The items that occupy many spaces
are more likely to be clicked and reached. As a result, train-
ing a recommender system based on the clickstreams are
likely to learn (1) the “layout” of the pages, and (2) the
recommendation rules of the online recommender system.
Ideally, we should keep only the spontaneous clicks in the
log to, at least partially, solve or bypass this issue.

4. ISSUE 2: THE ONLINE RECOMMEN-
DATION ALGORITHM AFFECTS THE
DISTRIBUTION OF THE TEST DATA

This section shows that evaluating the recommendation al-
gorithms based on the logs of the clickstreams may be prob-
lematic if the test data are poorly selected. Like the previous
section, we will start by explaining the problem and propose
possible ways to bypass the problem. We will conduct ex-
periments to support our claim.

4.1 The core problem
If we follow the procedure in Section 2 to generate the test
data, the click through rate of the new proposed recom-
mendation algorithm Rnew is very likely to be worse than
the online algorithm Rorig. The fundamental problem of
such a setting is that, if the suggested product list Lnew

recommended by the new recommendation module Rnew is
very different from the online recommendation module’s list
Lorig, the online users have no chances to click on the prod-
ucts that appear only in Lnew but not in Lorig. As a result,
the recommendation modules that suggest products close to
the online module tend to perform better.

4.2 Selecting proper test data
In several studies, researchers utilized the clickstreams as
the ground truth for evaluating recommender systems, as
we will demonstrate in Section 7. Specifically, given the
current context feature xi and the user’s next visited prod-
uct pj , we treat a recommendation to be successful if the
recommended list contains pj . As we explained above, if a
product pk appears in Lnew but not in Lorig, the product pk
is less likely to be clicked even though pk might be a great
recommendation given the context feature xi.

If we use the entire clickstream logs as the ground truth for
evaluation, the online recommendation algorithm is always
favored, since the next prouct pj is clicked probably because
it is included in the recommendation list returned by the
online recommendation module and naturally has a higher
chance to be clicked. Instead of using the entire clickstreams,
we probably should include the instance (xi, pj) to the test
dataset only when the click happens spontaneously. Similar
to the discussion in Section 3.2, if we push the concept to
the limit, we should only include (xi, pj) to the test dataset
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Table 2: The table shows the ratio of the number of the promoted products that appear in the recommendation list when
using train-all or train-sel as the training data (each recommendation algorithm returns the top-10 results).

method MC CategoryTP TotalTP ICF-U2I ICF-I2I NMF-U2I NMF-I2I

train-all 100.00% 1.48% 1.84% 93.22% 1.40% 1.48% 1.34%
train-sel 1.08% 0.86% 0.98% 14.46% 1.28% 1.32% 1.24%

if 1) pj is not directly linked from the current browsing page,
and 2) pj is not included in the recommendation list given
xi as the input of the online recommendation algorithm.

4.3 Experiment
This section demonstrates that the online recommendation
algorithm highly influences users’ clicks.

4.3.1 Experiment setting
The entire simulation process is very similar to Section 3.3.
Specifically, we first use the CategoryTP as the online rec-
ommendation algorithm and report the click through rate
of various recommendation algorithms based on two test
datasets: (1) test-all – the entire clickstream logs, and (2)
test-sel – the clickstreams that match the conditions de-
scribed in the last section. Next, we change the online rec-
ommendation algorithm to TotalTP and repeat the same
experiment.

4.3.2 Results
Table 3 and Table 4 show the experimental results when
the online recommendation algorithms are CategoryTP and
TotalTP respectively. For each compared method in each
table, we show four results: (1) training by train-all and
evaluating by test-all; (2) training by train-all and evaluat-
ing by test-sel; (3) training by train-sel and evaluating by
test-all; (4) training by train-sel and evaluating by test-sel.

If we use train-all for training and test-all for evaluation, the
recommendation algorithm that is the same as the online
recommendation algorithm always yields great results. For
example, when we use CategoryTP as the online recommen-
dation algorithm, the click through rates of (offline) Catego-
ryTP and TotalTP are 37.61% and 5.41% respectively. How-
ever, when we switch the online algorithm to TotalTP, the
click through rate of CategoryTP drops to 5.28%, and the
click through rate of (offline) TotalTP increases to 40.80%.
This demonstrates the issue we discussed in Section 4.1 –
the online recommendation algorithm and the ones similar
to the online recommendation algorithm tend to outperform
the others if the training and the test datasets are selected
poorly. Since several previous studies simply use all the
available test dataset for evaluation, the results are likely to
bias toward the online algorithm. As a result, their reported
results are questionable.

When we use train-all for training and test-sel for evalua-
tion, the models probably partially learned the recommen-
dation rules of the online recommendation algorithm. If the
online algorithm is a mediocre algorithm (e.g., TotalTP),
the proposed algorithms are likely to learn from bad exam-
ples. Thus, the models are probably not generic enough to
perform well in the general cases. As demonstrated in Ta-
ble 4, all the (train-all, test-sel) are worse than the (train-sel,
test-sel) results given the same proposed recommendation

algorithm. On the other hand, if the online recommenda-
tion algorithm mostly offers great recommendations, even
a mediocre algorithm may learn from good examples (ob-
tained from train-all). However, the good results do not
result from the ability of the model itself, but from the good
training data. As a result, the reported numbers may still
be questionable.

When we use train-sel as the training data and test-all as
the test data, the evaluation ground truth is affected by the
online recommendation algorithm and the link structure be-
tween the product pages. As demonstrated, when using Cat-
egoryTP as the online algorithm, the click through rates of
(offline) CategoryTP and TotalTP are 4.36% and 0.71% re-
spectively. However, when using TotalTP as the online algo-
rithm, the click through rate of CategoryTP drops to 0.86%
and the (offline) TotalTP increases to 1.47%. Indeed, the
online algorithm affects the distribution of the test dataset.

Finally, we believe that the proper training dataset and test
dataset should be train-sel and test-sel respectively. In this
case, the online training model does not affect the genera-
tion of the training data. Thus, the proposed methods will
not learn from the examples that are affected by the online
learning algorithm. Meanwhile, the online training algo-
rithm does not affect the generation of the test data either.
Thus, we may evaluate the proposed method based on an
unbiased test dataset.

4.4 Lessons learned
Previous studies sometimes use all the available test data
as the ground truth for evaluation. Unfortunately, such an
evaluation process inevitably favors the algorithms that sug-
gest products close to the online recommendation algorithm.
We should carefully select the test dataset to perform a fairer
evaluation.

5. ISSUE 3: CLICK THROUGH RATES ARE
MEDIOCRE PROXY TO THE RECOM-
MENDATION REVENUES

5.1 Core problem
Several academic studies on recommender systems exploit
the click through rate to compare different recommendation
algorithms. This metric is user-centric, i.e., it measures a
user’s satisfaction about a recommendation. Click through
rate is popular, probably because the industry hesitates to
share or release revenue-related information. As a result,
researchers mostly can only study users’ feedback and sat-
isfaction on a recommender system and hope that boost-
ing user-centric measures (e.g., click through rate) will in-
crease the business-centric measures (e.g., recommendation
revenue). Unfortunately, such a surmise was not carefully
validated.
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Table 3: The click through rates when the online recommendation algorithm is CategoryTP.
CategoryTP TotalTP MC ICF-U2I ICF-I2I NMF-U2I NMF-I2I

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

test-
all

37.61% 4.36% 5.41% 0.71% 58.89% 4.05% 46.88% 17.02% 28.37% 21.79% 16.54% 5.78% 8.78% 16.19%

test-
sel

2.76% 2.75% 1.02% 1.03% 1.88% 2.86% 1.60% 3.03% 2.38% 2.66% 2.54% 1.74% 2.52% 2.73%

Table 4: The click through rates when the online recommendation algorithm is TotalTP.
CategoryTP TotalTP MC ICF-U2I ICF-I2I NMF-U2I NMF-I2I

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

train-
all

train-
sel

test-
all

5.28% 0.86% 40.80% 1.47% 60.40% 1.22% 48.61% 16.40% 23.85% 10.77% 13.29% 0.80% 1.53% 4.17%

test-
sel

2.66% 2.89% 0.93% 1.18% 1.01% 2.98% 1.04% 2.62% 1.00% 2.07% 1.08% 2.39% 1.12% 2.03%

recommendation revenue

C
T

R

Figure 3: The relationship between the click through
rate and the recommendation revenue (from 2014/9/2 to
2015/9/13, each point represents one date). We exclude the
tick marks because we are not allowed to report their ex-
act values. The correlation of determination is only 0.089,
suggesting that they have a weak positive relationship.

5.2 Experiment

5.2.1 Experiment setting
We selected two measures to represent the user-centric and
the business-centric metrics: the click through rate and the
recommendation revenue. The click through rate is the pro-
portion that a recommendation is clicked. This metric is
probably the most typical user-centric measure. The rec-
ommendation revenue is the income contributed by the rec-
ommendation module.

We collected a year-long log (2014/9/2 - 2015/9/13) from
a large EC website in Southeast Asia. For each day, we
calculated the click through rate and the recommendation
revenue. Note that during the year of the study we launched

and retired different recommendation algorithms (e.g., Ma-
trix Factorization, Markov Chain, CategoryTP, a mixture
of several methods, etc.) on different pages (e.g., the main
page, the product category page, and the product page). As
a result, we measure the click through rate and the recom-
mendation revenue across many different settings.

5.2.2 Experiment results
Figure 3 presents the relationship between the click through
rate of the recommendations and the recommendation rev-
enue. The correlation of determination (R2) between the
click through rate and recommendation revenue is only 0.089,
suggesting that they have a very weak correlation. There-
fore, it could be improper to simply pursuing click through
rate and hope that increasing click through rate will boost
the revenue.

5.3 Lessons learned
Based on the result, comparing different recommendation
modules purely based on the user-centric metrics, such as
the click through rate, may fail to capture the business
owner’s satisfaction. Unfortunately, studies on recommender
systems mostly perform comparisons based on the user-centric
metrics. As a result, even if a recommendation algorithm
attracts many clicks, we cannot assure this algorithm will
bring a large amount of revenue to the website.

6. ISSUE 4: EVALUATING RECOMMEN-
DATION REVENUE IS NOT STRAIGHT-
FORWARD

EC companies build recommendation modules in the hope
that these modules will discover users’ purchasing intentions
and eventually boost the revenue. It is reported that a large
portion of an EC website’s revenue comes from recommen-
dation [20]. In this section, we show that evaluating rec-
ommendation revenue is not as straightforward as it first
looks.

6.1 The core problem
We ask a more fundamental and probably more challeng-
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Figure 4: A comparison of the number of the total purchases
in two cases: displaying the recommendation panel or not.
Green line: the channel with a recommendation panel; blue
line: the channel without a recommendation panel. Due to
business sensitivity, the tick labels of the y-axes are removed.
It appears that the recommendation panel brings little extra
revenue, if any, to the channel.

ing question: does a recommendation module bring extra
revenue (or extra orders) to an EC website? Although we
can measure the number of purchases contributed by a rec-
ommendation module, we cannot tell whether these buyers
would still purchase these (or possibly similar) items without
the recommendation module. It is possible that the recom-
mendation modules are served as a convenient tool for users
to locate the desired items, but even without the recom-
mendation module, the users can still discover these items
through another user interface provided by the website.

6.2 Experiment

6.2.1 Experiment setting
To answer the question, we propose to conduct experiments
based on A/B testing to control the appearance of the rec-
ommendation module. Specifically, we collaborated with a
large EC website in Southeast Asia. We directed 5% of users
to a channel that displays no recommendation on the prod-
uct page (channel 1), and another 5% of users to a normal
channel that displays recommendations as usual (channel 2).
If the total purchases of channel 1 is very similar to the to-
tal purchases of channel 2, then the recommendation module
brings no extra purchases to the website. In this case, the
recommendation module probably simply provides another
way for the users to discover the items of their interests.

6.2.2 Experiment results
Figure 4 shows the total purchases and the recommended
purchases of the two channels. We use blue line to display
users’ orders in channel 1 (the no recommendation channel)
and the green line for channel 2 (the normal channel). The
lower sub-figure of Figure 4 shows that users indeed purchase
recommended items. This seems to suggest that recommen-

dation is helpful in increasing the number of sales. However,
if we compare the total number of purchases of each channel
(the upper sub-figure of Figure 4), we see no obvious ben-
efit of having the recommendation panel. It appears that,
for most of the times, the users who purchases recommended
items still purchase items even without the recommendation
module.

6.3 Lessons learned
Based on the result, we suspect that, although a recommen-
dation module may help users quickly discover their needs,
these users, even without the recommendations, may still
be able to locate the desired products by other processes,
e.g., by querying through the search bar, or by navigat-
ing through the hierarchical table of contents. Thus, it is
not clear whether a recommendation module brings extra
purchases, or simply re-direct users from other purchasing
processes to recommendation. In an extreme case, an EC
company can fill in the entire page with recommendations
and claim that nearly 100% of their revenue comes directly
from recommendations. Apparently, such a claim is mis-
leading. To proper evaluate the extra revenue contributed
by a recommender system, we still need to leverage on A/B
testing. Unfortunately, it is very difficult for the researchers
in academia to perform A/B testing in practice.

7. RELATED WORKS

7.1 Common metrics to evaluate recommender
systems

Most studies on recommender systems compare different al-
gorithms based on user-centric metrics, which can be cate-
gorized into the following types: accuracy-based, diversity-
based, and surprisal-based.

Typically, we would like a recommendation module to accu-
rately predict a user’s preference on items. Thus, accuracy
is a natural choice to measure recommendation modules. A
simple way to measure accuracy is click through rate – in
what percentage a user clicks a recommendation [10]. How-
ever, such a metric may favor the algorithms that tend to
recommend popular items, because recommendation accu-
racy usually declines towards the long tail [25]. In addition
to accuracy, researchers have found that diversity plays an
important role in improving users’ satisfaction about rec-
ommendation [5]. To quantify “diversity”, one can measure
the average dissimilarity between all pairs of recommended
items based on these items’ attributes, such as their brands,
prices, or taxonomy. Diversity and accuracy are usually a
trade-off. One can easily increase diversity by recommend-
ing unrelated items, but this usually sacrifices the accuracy.
Surprisal, sometimes known as novelty, is a type of user-
centric metric that is relevant to diversity. Previous studies
have inconsistent definitions about surprisal. As a result,
the terms “diversity”, “surprisal”, “serendipity”, and “cov-
erage” are sometimes interchangeable. Here, we define sur-
prisal as the unexpectedness of a recommendation. Thus,
one can define the surprisal as the inverse of an item’s pop-
ularity. Such an idea is illustrated in [27] with a simple
modification.

Several studies aimed to optimize a combination of the above
metrics because very often we can expect a tradeoff between
these metrics. Instead of proposing another metric or trying
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to maximize these metrics, we show that many studies prob-
ably incorrectly reported these metrics. We also show that
user-centric metrics may be inconsistent with the business-
centric metrics, such as recommendation revenue.

There are studies aimed at unbiased offline evaluation for
recommender systems based on contextual-bandit [18; 17].
These methods mostly assume the researchers can control
the online recommendation module to explore the uncertain
cases. Unfortunately, most researchers have no access to a
live large-scale information system. They mostly rely on the
datasets released by the large companies.

7.2 Reviewing Previous Competitions and Pub-
lications

We review previous competitions and publications that may
fall into some of these pitfalls.

RecSys Challenge 2015 [6] offered the clickstreams of ses-
sions from a big retailer which utilizes the recommender
system service provided by YOOCHOOSE. Some of these
sessions include the purchase events. The goal of the chal-
lenge is to predict the purchased item (if any) given the
clickstream of a new session. Such a dataset is indeed valu-
able resource for the researchers in academia. However, us-
ing the clickstreams as the training data may generate the
models that tend to recommend the highly reachable items,
as discussed in Section 3. Additionally, the challenge uti-
lized users’ logs to perform offline evaluation, which may
also be problematic, as explained in Section 4. The similar
problems appear in several challenges, such as the RecSys
Challenge 2016 [26], the Display Advertising Challenge pro-
vided by Criteo Labs in 2014 [3], the Click-Through Predic-
tion Challenges provided by Avazu in 2015 [2] and by Out-
brain in 2017 [4]. The studies that utilized these datasets
for model generation and evaluation may also suffer from
similar problems. Recently, some competitions started to
use (or partially use) the online events for evaluation. For
example, the RecSys Challenge 2017 consists of two stages
– the offline and the online phase. During the online eval-
uation phase, the recommendations proposed by each team
are rolled out to the live system. As a result, the real users
have chances to interact with the recommended items [1].

Many studies on recommender systems aimed at predicting
users’ ratings to items or increase the click through rate.
However, clicking (browsing) and buying could be very dif-
ferent behaviors. As shown in [13], this two types of behav-
iors can be classified by a supervised learner. Thus, simply
pursuing the click through rate may not necessarily increase
the business runner’s revenue. For example, given a list of
recommended items, a user may be encouraged to continue
browsing these items instead of purchasing. Unfortunately,
since the revenue related information is usually business sen-
sitive, the business runners may not want to share such in-
formation with outsiders.

It is reported that 35% of Amazon’s product sales are from
recommendation [20]. However, how to derive such a num-
ber was unspecified. If, for example, an EC website fills most
of the pages with recommendations, it is not surprising that
most of the clicks and the purchases are directly or indirectly
from the recommendations. To ensure the (extra) purchases
or the (extra) revenue coming from a recommendation mod-
ule, we believe that one of the most reliable tool is A/B test-
ing. Unfortunately, applying A/B testing requires to have a
large platform with many users. This is not always available

for researchers, especially those in universities.

8. DISCUSSION AND FUTURE WORK
This paper shows four pitfalls that may occur in several
studies and competitions of recommender systems. Specif-
ically, the first two issues are due to the biased data col-
lection of the training and the test datasets. These two
pitfalls should be concerned not only by the researchers and
practitioners of the recommender systems but also the data
scientists in general. However, we mainly focus on the field
of recommender systems in this paper because, unlike some
machine learning problems in which the distribution of the
training and the test datasets are affected only to a small
extent by the data collecting approach, the distribution of
the training and test dataset of recommender systems are
highly influenced by the way they are collected. The third
issue is regarding the proper selection of the evaluation met-
rics. Again, every data scientist should aware of the issue,
but such a problem is less discussed in the field of recom-
mender systems due to its nature – the revenue related infor-
mation is usually business sensitive and protected. Finally,
the fourth issue is even less addressed: even if the recom-
mender systems indeed bring purchases, the purchases may
not be the extra purchases. As a result, the recommender
systems may improve customers’ user experience, but may
not bring immediate extra revenue to a business runner.

For future work, we would like to build an open platform in
which researchers may register and plug their recommen-
dation algorithm onto the platform. The platform redi-
rects traffic into different registered algorithms in the back-
end. Thus, every recommendation algorithm is served on-
line. The researchers do not need to worry about the offline
evaluation issues. Such a platform may, at least partially,
address the second and the fourth issue discussed in this
paper. We are currently developing such a system and ne-
gotiating with several EC companies to try the system. We
hope to open the system as an arena so that researchers
and practitioners may compare their recommendation algo-
rithms in a more realistic environment.
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