PTh1 : GaAsSbN grown on GaAs by gas source molecular beam epitaxy Ta-Chun Ma, Tsung-Yi Chen, Shiu-Kai Chang, Yan-Ting Lin, Hao-Hsiung Lin Graduate Institute of Electronics Engineering, National Taiwan university

PTh2 : A Novel Template Approach by MBE for ALD Growth of High κ Dielectrics

K. Y. Lee, W. C. Lee, C. H. Chung, Y. K. Chiou, M.L. Hung, Y.J. Lee, M. Hong and J. Kwo

Department of Materials Science and Engineering, National Tsing Hua University Department of Physics, National Tsing Hua University

PTh3 : Structural and Magnetic Characteristics of Epitaxial Fe₃Si/GaAs Heterostructures

Y. L. Hsu^{1,*}, M. L. Huang², W. Chang², C. H. Hsu³, M. Hong² and J. Kwo¹ ¹Department of Physics, National Tsing Hua University ²Department of Materials Science and Engineering, National Tsing Hua University ³Synchrotron Radiation Research Center

PTh4 : InAs/GaAs Quantum Dot Infrared Photodetectors with Thick Active Regions

S. W. Chou^a, S. Y. Wang^b, M. C. Lo^a, H. S. Lin^a, S. D. Lin^a, and C. P. Lee^a ^aDepartment of Electronics Enigneering, National Chiao Tung University ^bInstitute of Astronomy and Astrophysics, Academia Sinica

PTh5 : Mid-infrared InAsPSb/InAsSb quantum-well light emitter

Chia-En Wu, Gene Tsai, and Hao-Hsiung Lin Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University

PTh6 : Optical properties of unintentionally doped InN grown by PA-MBE

W. C. Chou^a, C. L. Hsiao^{ac}, K. R. Wang^b, M. Chen^a, Z. W. Jiang^a, B. L. Tseng^a, J. S. Tsai^a, L. K. Wang^a and L. W. Tu^a

^a Department of Physics and Center for Nanoscience & Nanotechnology, National Sun Yat-Sen University

^b Department of Materials Science and Engineering, National Tsing Hua University ^c Center for Condensed Matter Sciences, National Taiwan University

PTh7 : Growth condition investigation for AIN heteroepitaxil layers grown on Si (111) substrate by plasma-assisted MBE

T. H. Lu^a, Y. T. Lin^a, C. B. Huang^a, M. F. Huang^{a*}, W. Chen^b and L. Leung^c ^a Institute of Photonics, National Changhua University of Eduation ^b Department of Electronics, National Changhua University of Eduation ^c Oxford Instruments, Bristol, United Kindom

PTh8 : Effect of substrate temperature on InN/Si(100) grown by plasma-assisted chemical beam epitaxy Wei-Chun Chen, Shou-Yi Kuo*, and Chien-Nan Hsiao Instrument Technology Research Center, National Applied Research Laboratories

- PTh9 : The Simulation and Analysis of 150nm Double-Gate P-HEMT with In_{0.53}Ga_{0.47}As/InAs/ In_{0.53}Ga_{0.47}As Composite Channel P. Y. Yang Department of Photonics & Display Institute, National Chiao-Tung University
- PTh10 : Investigation of Growth Rate of Carbon-Doped GaAs Grown by MOCVD using CBr₄

Xin-Zhang Lee^{*,1}, Chong-Yi Lee¹ and Juh-Yuh Su²
1. Department of Electronic Engineering, I-Shou University
2. Department of Research and Development, Epitech Technology Company

PTh11 : Metal contacts on GaN

C. H. Tsai, Y. J. Tu, Z. W. Jiang, B. L. Tseng, W. C. Chou, L. K. Wang and L. W. Tu

Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University

PTh12 : InAsPSb quaternary for mid-infrared application grown by gas source molecular beam epitaxy

Gene Tsai, D. L. Wang, C. E. Wu, C. R. Wu, Y. T. Lin and Hao-Hsiung Lin Graduate Institute of Electronics Engineering and Department of Electrical Engineering, National Taiwan University

PTh13 : Valence band offset of wurtzite InN/AIN heterojunction determined by photoelectron spectroscopy

C. -L. Wu, C. -T. Kuo, C. -H. Shen, and S. Gwo Department of Physics, National Tsing-Hua University

PTh14 : Ultrafast Carrier-Phonon Interactions in InN

Yu-Chieh Wen, Cheng-Ying Chen, Chang-Hong Shen and Shangjr Gwo, Chi-Kuang Sun Graduate Institute of Electro-Optical Engineering, National Taiwan University Department of Physics, National Tsing-Hua University Department of Electrical Engineering and Graduate Institute of Electro-Optical Engineering, National Taiwan University

PTh15: SiO₂/InN Metal-Oxide-Semiconductor Structure

P. L. Tseng^a, Z. W. Jiang^a, K. R. Wang^b, M. Chen^a, W. C. Chou^a, C. H. Tsai^a, L. K. Wang^a and L. W. Tu^a ^a Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University

^b Department of Materials Science and Engineering, National Tsing Hua University

PTh16: Raman spectra of InN films with different carrier concentrations

L. K. Wang, Z. W. Jiang, M. Chen, P. L. Tseng, W. C. Chou, C. H. Tsai, and L. W. Tu

Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University

PTh17 : Material Properties of the InN Grown on Si(111) with Intermediate AIN Single Crystal Layer Using Plasma-assisted Molecular Beam Epitaxy

K. R. Wang^a, S. J. Lin^a, Z. W. Jiang^b, M. Chen^b, L. K. Wang^b, W. C. Chou^b, P. L. Tseng^b, C. H. Tsai^b, Y. L. Chen^a, K. H. Cheng^a, P. K. Huang^a, M. H. Tsai^a, C. L. Hsiao^c, J. W. Yeh^a, S. K. Chen^a, C. K. Wang^b and L. W. Tu^b

^a Department of Materials Science and Engineering, National Tsing Hua University^b Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University^c Center for Condensed Matter Sciences, National Taiwan University

PTh18: Near-Infrared Photoluminescence of Vertically Aligned InN Nanorods Grown on Si(111) by Plasma-Assisted Molecular-Beam Epitaxy H.-Y. Chen, C.-H. Shen, H.-W. Lin, C.-H. Chen, C.-Y. Wu, and S. Gwo, V. Yu. Davydov and A. A Klochiklin Department of Physics, National Tsing-Hua University Ioffe Physico-Technical Institute, Russia

PTh19 : Self-assembled Vertical Aligned GaN Nanorods on Si(111) by PA-MBE

C.-H. Shen, H.-Y. Chen, H.-W. Lin, C.-H. Wu, and S. Gwo* *Department of Physics, National Tsing-Hua University*

- PTh20: Nitride based nanorods grown on Si(111) substrate Y. J. Tu, C.H. Tsai, M. Chen, C. L. Hsiao, and L. W. Tu Department of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University
- PTh21 : Enhanced thermal stability and emission intensity on InAs quantum dots covered by InGaAsSb strain-reducing layer

W. S. Liu¹, J. I. Chyi¹, W. Y. Chen², H. S. Chang², and T. M. Hsu² ¹ Optical Sciences of Center and Department of Electrical Engineering, National Central University, University System of Taiwan ² Department of Physics and Center for Nano Science and Technology, National Central University, University System of Taiwan

PTh22 : Enhanced light emission from InAs quantum dots in photonic crystal nanocavities at room temperature

H.-S. Chang¹, W.-Y. Chen¹, W.-H. Chang¹, T.-P. Hsieh², J.-I. Chyi², and T. M. Hsu^{1*}

1. Department of Physics and Center for Nano Science and Technology, National Central University

2. Department of Electrical Engineering, National Central University

PTh23 : Selective excitation photoluminescence of InAs self-assembled quantum dots

H. S. Ling^a, S. D. Lin^a, S. Y. Wang^b, M. C. Luo^a, C. P. Lee^a a Department of Electronic Engineering, National Chiao Tung University b Institute of Astronomy and Astrophysics, Academia Sinica

PTh24 : Capping layer effect on InGaAs/GaAs Quantum Dots grown by molecular beam epitaxy

T. E. Tzeng, David J. Feng, C. Y. Chen, T. S. Lay* and T. Y. Chang *Institute of Electro-Optical Engineering, National Sun Yat-Sen University*

PTh25 : $\lambda = 1.31 \ \mu m \ ln_x Ga_{1-x} As/GaAs$ quantum dots capped with low In-content $ln_y Ga_{1-y} As$ grown by molecular beam epitaxy

David J. Feng, T. E. Tzeng, C. Y. Chen, T. S. Lay* and T. Y. Chang Institute of Electro-Optical Engineering, National Sun Yat-Sen University

PTh26 : Effects of composite matrix on the emission wavelengths of quantum dots

Pei-Lun Hsu, Rei-Bin Chou, Meng-Jie Shiao, Wei-Sheng Liu, David Ming-Ting Kuo, and Jen-Inn Chyi

Department of Electrical Engineering, National Central University

PTh27 : Single Mode InGaAs Sub-Monolayer Quantum-Dot Photonic-Crystal VCSELs

H. P. D. Yang¹, I. C. Hsu², F. I. Lai², G. Lin¹, R. S. Hsiao¹, N. A. Maleev³, S. A. Blokhin³, A. R. Kovsh³, H C Kuo², S C Wang², J Y Chi¹

¹ Nanophotonic Center, Industrial Technology Research Institute

² Institute of Electro-Optical Engineering, National Chiao Tung University

³ Ioffe Physico-Technical Institute, Russia

PTh28 : Cross-Shaped Polarization-Switching VCSELs for Dual-Channel Communications

H. P. D. Yang¹, I. C. Hsu², F. I. Lai², H C Kuo², J Y Chi¹

¹ Nanophotonic Center, Industrial Technology Research Institute ² Institute of Electro-Optical Engineering, National Chiao Tung University

PTh29 : The Comparison of MBE- and MOCVD-Prepared GaAs/AlGaAs Quantum Well Infrared Photodetector

Shang-Fu Chen^a, Shu-Ting Chou^a, Shih-Yen Lin^b, Jing-Mei Wang^b and Meng-Chyi Wu^a

^a Department of Electrical Engineering, National Tsing Hua University ^b Electronics & Optoelectronics Research Laboratories, Industrial Technology Research Institute

PTh30 : Modulation-Doped InGaAs/InGaAlAs Asymmetric Multiple Quantum-Well Structures Grown by MBE

C.Y. Chen, C. F. Liang, David J. Feng, T. S. Lay, and T. Y. Chang Institute of Electro-Optical Engineering, National Sun Yat-Sen University

PTh31 : DC characteristics of InGaAsSb/InP hbts grown by solid-source molecular beam epitaxy

S. H. Chen, R. J. Hsieh, S. Y. Wang, G. P. Chi, and J. I. Chyi Department of Electrical Engineering, National Central University

PFr1 : Defects-Related Optical Spectra of Cadmium Telluride Films Prepared by Molecular Beam Epitaxy

Zhe Chuan Feng,* Shang-Yu Hung and Ting Wei Kuo, Ian T. Ferguson Graduate Institute of Electro-Optical Engineering & Department of Electrical Engineering, National Taiwan University School of Electrical Engineering, Georgia Institute of Technology, Atlanta, USA

PFr2 : The enhancement of ripening effect in CdSe quantum dots using ZnSe partial capped by molecular beam epitaxy

Y.J. Lai^a, C.S. Yang^a, W.J. Huang^b, J.S. Wang^b, and Y.T. Shin^c ^a Department of Electrophysics, National Chiao Tung University b Department of Physics, Chung Yuan Christian University c Department of Physics, National Changhua University of Education

PFr3 : Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0001) under different O/Zn flux ratios

C. J. Pan¹, C. J. Tun², C. C. Lee¹, B. J. Pong¹, G. C. Chi¹, and C. W. Tu³ ¹Optical Sciences Center and Department of Physics, National Central University ²National Synchrotron Radiation Research Center ³Department of Electrical and Computer Engineering, University of California, USA

PFr4 : Modified Molecular Beam Epitaxy Growth of GaN on LiGaO₂ substrates

Sa Huang^a, April Brown^b, Alan Doolittle^c, Zhen Sheng Lee^d, Zhe Chuan Feng^{d*} a. 5000 Chandler Blvd, C5-157, Chandler, AZ 85226, USA b. Pratt School of Engineering, Duke University, Durham, USA c. Microelectronics Research Center, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA d. Graduate Institute of Electro-Optical Engineering & Department of Electrical Engineering, National Taiwan University

PFr5 : Analysis of Yttrium-doped and Pure Hafnium Oxide High κ Dielectric Thin Films on GaAs

W. C. Lee¹, Y. J. Lee¹, Z. K. Yang¹, P. Chang¹, M. L. Huang¹, S. C. Liou², C. H. Chsu³, M. Hong¹, and J. Kwo⁴ ¹Dept. of Materials Science and Eng., National Tsing Hua University ²Center for Condensed Matter Sciences, National Taiwan University ³National Synchrotron Radiation Research Center ⁴Department of Physics, National Tsing Hua University

PFr6 : Grown Ga₂O₃(Gd₂O₃) thin film of cubic phase on Si(111) by molecular beam epitaxy

M. C. Hang², T. D. Lin¹, Z. K. Yang¹, H. Niu⁴, C. H. Hsu³, J. Kwo², and M. Hong¹ ¹Department of Material Science and Eng., National Tsing Hua University ²Department of Physics, National Tsing Hua University ³National Synchrotron Radiation Research Center ⁴Nuclear Science and Technology Development Center

$\label{eq:PFr7} PFr7 : Structure Characteristics and Strain Relaxation Behavior of Ultrathin Y_2O_3 Films Epitaxially Grown on Si(111) $$ Y_2O_3$ Films Epitaxially Grown Option Films Epitaxially Films Epitaxially Grown Option Films Epitaxially Films Epitaxially$

C.-W. Nieh¹, W.-C. Lee¹, Y.-J. Lee¹, Z.-K. Yang¹, J. Kwo², C. H. Hsu³ and M. Hong¹

¹Dept. Materials Science and Eng., National Tsing Hua Univ. ²Dept. of Physics, National Tsing Hua Univ. ³National Synchrotron Radiation Research Center

PFr8 : Inelastic Electron Tunneling Spectroscopy Study on MBE-grown HfO₂ Metal-Oxide-Semiconductor System

C.C. Huang^{1*}, H. C. Ho¹, Y. D. Wu², W. C. Lee², M. Hong², and J. Kwo¹ ¹Department of Physics, National Tsing Hua University ²Department of Materials Science and Engineering, National Tsing Hua University

PFr9 : The Improvement of Interfacial and Electrical Properties for Sputtered Ti-HfO₂ Dielectrics by Using a MBE-Grown Template Y. D. Wu^{1*}, Y. J. Lee¹, W. C. Lee¹, M. L. Huang¹, H. C. Chiu¹, M. Hong¹, J. Kwo² ¹Department of Materials Science and Engineering, National Tsing Hua University

²Department of Physics, National Tsing Hua University

PFr10 : Electrical characteristics of High-K MOSCAP and MOSFET devices with MBE-grown HfO₂ gate oxide and TiN metal gate

C. H. Pan¹, W. C. Lee², C. S. Chiou, C. P. Chen², K. Y. Lee², Y. J. Lee², Z. K. Yang², Y. N. Chiou³, M. Hong², and J. Kwo³ ¹Department of Electrical Engineering, National Tsing Hua University ²Department of Materials Science and Engineering, National Tsing Hua University ³Department of Physics, National Tsing Hua University

PFr11 : Characteristics of initial growth of Ga₂O₃(Gd₂O₃) on GaAs

M. L. Huang¹, T. D. Lin¹, W. C. Lee¹, T. H. Chiang¹, J. Kwo², and M. Hong¹ ¹Department of Materials Science and Engineering, National Tsing Hua University ²Department of Physics, National Tsing Hua University

PFr12 : Interfacial characteristics of high-quality single-crystal Sc₂O₃ grown on Si(111)

H. Y. Chou¹, P. Chang¹, Z. K. Yang¹, M. L. Huang¹, J. Kwo², and M. Hong¹ ¹Dept. of Materials Science and Eng., National Tsing Hua University ²Dept. of Physics, National Tsing Hua University

PFr13 : Electric spin injection in GaAs/AlGaAs Quantum well LEDs

Y. N. Chiu¹, C. C.Ho¹, P. Chang², H. P. Yang³, M. Hong², and J. Kwo¹ ¹Department of Physics, National Tsing Hua University ² Department of Material Science and Engineering, Nation Tsing Hua University ³Industrial Technology Research Institute

PFr14 : Exchange biasing in IrMn/(Ga, Mn)As bilayers

Y. F. Chen, H. D. Lin, J. H. Huang,* W. N. Lee, C. H. Lai, and T. S. Chin Department of Materials Science & Engineering, National Tsing Hua University

PFr15 : Magnetic Properties of MBE Grown Cobalt Doped HfO₂

Y.H. Chang¹, W.C. Lee¹, Y.L. Soo², Y.J. Lee¹, M.C. Hang², Z.K. Yang¹, S.F. Lee³, J. Raynien Kwo², M. Hong¹ ¹Department of Materials Science and Engineering, National Tsing Hua University ²Department of Physics, National Tsing Hua University ³Academia Sinica

PFr16 : Transition energies of Ge/Si quantum dots grown by molecular beam epitaxy

K. B. Hong, M. K. Kuo and T. R. Lin Institute of Applied Mechanics, National Taiwan University

PFr17 : ZnO MSM Photodetectors with Ru Contact Electrodes

Shoou-Jinn Chang, Tien-Kun Lin, Sheng-Po Chang, Yu-Zung Chiou ¹Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University

²Department of Electronics Engineering, Southern Taiwan University of Technology