Toward Efficient and Incremental Spectral Clustering
via Parametric Spectral Clustering

Jo-Chun Chen, Hung-Hsuan Chen
Department of Computer Science and Information Engineering
National Central University
Taoyuan, Taiwan
logchen0620@g.ncu.edu.tw, hhchenl105@acm.org

Abstract—Spectral clustering is a popular method for effectively
clustering nonlinearly separable data. However, computational
limitations, memory requirements, and the inability to perform
incremental learning challenge its widespread application. To
overcome these limitations, this paper introduces a novel approach
called parametric spectral clustering (PSC). By extending the
capabilities of spectral clustering, PSC addresses the challenges
associated with big data and real-time scenarios and enables
efficient incremental clustering with new data points. Experimental
evaluations conducted on various open datasets demonstrate the
superiority of PSC in terms of computational efficiency while
achieving clustering quality mostly comparable to standard spec-
tral clustering. The proposed approach has significant potential for
incremental and real-time data analysis applications, facilitating
timely and accurate clustering in dynamic and evolving datasets.
The findings of this research contribute to the advancement of
clustering techniques and open new avenues for efficient and
effective data analysis. We publish the experimental code at
https://github.com/109502518/PSC_BigData,

Index Terms—spectral clustering, incremental clustering, online
clustering, nonlinear clustering

I. INTRODUCTION

Clustering, as a fundamental technique in various fields
such as data mining and pattern recognition, plays a critical
role in analyzing large datasets by dividing them into smaller
and more coherent groups, facilitating the analysis of large
datasets. The importance of clustering is further underscored
by its frequent usage as a preprocessing step for subsequent
analyses [1]. Despite the extensive development of clustering
techniques, it remains an active research area due to its wide-
ranging applications and inherent challenges [2]].

Among the various clustering methods, spectral clustering
has gained considerable popularity and demonstrated superior
performance. Spectral clustering has a significant benefit in
that it can manage datasets with patterns that are not linearly
separable. This is accomplished by dividing the data points
in a transformed space rather than directly dividing them in
the original feature space. This unique property makes spectral
clustering suitable for a variety of complex applications and
domains, and it is often able to uncover clusters that other
clustering techniques are unable to detect.

Although spectral clustering is a widely used clustering
method that has shown remarkable performance in various
applications, it suffers from significant limitations: its compu-
tation time and memory usage are huge, and it cannot perform

incremental clustering. Therefore, it could be challenging to
apply spectral clustering to a large dataset. Furthermore, once a
spectral clustering model is trained, it cannot cluster new data
points without retraining the entire model. These limitations
can be critical issues in applications with big data or when
the data streams continuously arrive, and the clustering results
must be updated in real-time.

To overcome these limitations and enable spectral clustering
for handling big data and supporting incremental clustering, this
paper presents an innovative approach called parametric spectral
clustering (PSC). Essentially, PSC learns a parametric function
to project data points into low-dimensional representations. This
is a critical step in spectral clustering, although it requires a lot
of computing resources. The approximated low-dimensional
representations of both the new and original data points are
then utilized altogether for clustering.

We evaluate the effectiveness and efficiency of PSC based on
real-world datasets. The experimental results demonstrate that
PSC handles big data more efficiently and enables incremental
clustering while maintaining clustering quality comparable to
the standard spectral clustering method. Thus, PSC has broad
applications in various fields with large datasets, such as user
behavior segmentation, social media content grouping, real-time
anomaly detection, and many more [3]-[6].

The rest of the paper is organized as follows. Section
reviews previous studies on spectral clustering and incremental
clustering. Section [[I] introduces the training process, the infer-
ence process, and the properties of PSC. Section [IV] presents
the experimental results. Finally, Section [Y] summarizes our
contributions and discusses future research directions.

II. RELATED WORK

Spectral clustering leverages the eigenvalues and eigenvectors
of a Laplacian matrix to transform the data into a lower-
dimensional but more representative space, where a base
clustering algorithm, such as k-means, can be applied to
the transformed data instances. Spectral clustering has been
extensively discussed in the literature, with notable works
including [7]], [8]. Numerous variants and enhancements of
spectral clustering have been proposed to improve its robustness
and scalability [9]-[12].

Incremental clustering (a.k.a. online clustering) addresses
the challenge of clustering large datasets in real-time. Unlike

https://github.com/109502518/PSC_BigData

Algorithm 1 Spectral clustering algorithm

Input: X = {z;,...,x,}: n data points, each x; € R?

Input: p: the length of the low-dimensional space, p < d

Output: C = {cy,...,c,}: the cluster IDs for the input data
points x1,..., &,

1: Compute the similarity matrix S = [s; ;] € R"*", where
s;,; represents the similarity score between x; and x;

2: Compute the normalized Laplacian matrix L =
D~'Y/28D~'/2 where D = [d; ;] € R™ " is a diagonal
matrix with d;; = Z?:l Sij

3: Compute the p eigenvectors vy,...,v, of L whose
corresponding eigenvalues are the p largest ones and form
the matrix V' = [vq,...,v,] € R"*P (ie., the columns of
V' are the eigenvectors)

4: Treat each row in V as a data point in RP and apply a
clustering algorithm (e.g., k-means) on these data points.
The output cluster IDs ¢y, . . . ¢, are that of the data points
L1,...Lnp.

traditional batch clustering, incremental clustering algorithms
continuously cluster new data points (and possibly update the
cluster ID of the original data points) as the new data points
arrive. This incremental property allows efficient handling
of dynamic datasets and enables the detection of evolving
patterns. Various approaches have been proposed for incre-
mental clustering, including stream clustering algorithms [|13]],
[14]] and online clustering methods [15]]. Famous algorithms
alone this line includes CluStream [16]], DenStream [17]], and
BIRCH [18]]. However, these models are mostly used in the
data stream environment and are sometimes sensitive to the
selected hyperparameters. Additionally, studies on data streams
commonly assume that old data points become less important,
which may ease the computation burden and accelerate the
computation. However, gradually retiring old data points may
not be a valid assumption in many cases. A tutorial on online
clustering can be found in [[19].

Previous studies have addressed the computational chal-
lenges associated with spectral clustering, primarily through
approximation or sampling techniques [20]], [21]. In contrast to
these methods, our proposed method is distinct by leveraging
the parametric modeling technique, making PSC stand out in
comparison to prior work.

III. METHODOLOGY
A. Preliminary: Spectral Clustering

Spectral clustering transforms input data points into a
low-dimensional (but probably more representative) space
and clusters the data points in the low-dimensional space.
The transformation uses spectral properties, often identifying
distinctive patterns not easily detected by alternative clustering
algorithms.

The spectral clustering algorithm separates data points
according to several key steps [7]. The algorithm begins by
computing a similarity matrix (typically using the Gaussian

TABLE I
THE STRUCTURE OF A SIMPLE NEURAL NETWORK THAT LEARNS TO MAP
a; € R? TO A SMALLER VECTOR v;, € RP (p < d).

Layer Type Number of Neurons Activation Function
Input feature d None
First fully connected layer n1 ReLU
Second fully connected layer n2 ReLU
Third fully connected layer n3 ReLU
Fourth fully connected layer P None

kernel as a proxy of the similarity score, which will be
explained in Section that captures the pairwise distances
between the input data points. This similarity matrix is the
foundation for constructing a graph representation of the
dataset, with the data points acting as nodes, and the edges
and weights reflecting the pairwise similarities. The algorithm
calculates the Laplacian matrix from this graph representation
that captures the relationships among the data points. The
next step involves calculating the eigenvalues and eigenvectors
of the Laplacian matrix. Finally, these eigenvectors serve as
the transformed lower-dimensional representation, where a
base clustering algorithm, such as k-means, can be applied.
Algorithm [T] provides the pseudocode.

Although spectral clustering is powerful, it requires many
computational resources in terms of time and space. First, the
computational demands associated with spectral clustering are
intensive. Tasks such as eigenvalue decomposition (as seen in
line 3 of Algorithm [T) and matrix operations (as seen in line
2 of Algorithm [I)) are computationally expensive and typically
exhibit a time complexity of O(n?). Furthermore, the memory
requirements for storing the similarity matrix and performing
eigenvalue decomposition can quickly become prohibitive as
the size of the dataset increases with the complexity of the space
of O(n?) [21]]. These computational and memory constraints
limit the scalability of spectral clustering.

Another limitation of spectral clustering is the lack of support
for incremental clustering. Once the spectral clustering model
is trained on a fixed dataset, incorporating new data points,
even just a single data point, into the existing model without
retraining the entire model becomes challenging. This limitation
hinders the application of spectral clustering in scenarios
involving enormous datasets clustering or data stream clustering,
as it becomes impractical to retrain the model whenever new
data points arrive in real-time.

B. Parametric Spectral Clustering — Training

Parametric spectral clustering consists of two key steps. The
first step is almost identical to the first half of the spectral
clustering algorithm. Given a sampling rate r (0 < r < 1), we
sample v = round(nr) data points X' = {&,...,x]} from
the initially available data points X = {x1,...,x,}. We treat
each data point =} € R? as a node and connect all edges in the
graph. Next, we select a kernel function (typically a Gaussian
kernel [[7]]) to define s; ; the similarity between two data points
x; and z’. Once the similarity matrix S = [s; ;] € R"*" is

Algorithm 2 Training procedure of PSC

Input: X = {z;,...,x,}: n data points, each x; € R?
Input: p: the length of the low-dimensional space, p < d
Input: r: sampling rate, 0 < r <1

Qutput: A trained model M

I: v =round(rn)

2: Sample v data points X’ = {x},...,z,} from X

3: Compute the similarity matrix S = [s; ;] € R"*”, where
s;,j represents the similarity score between x; and
(usually using Gaussian kernel)

4: Compute the normalized Laplacian matrix L =
D=Y28D~1/2 where D = [d; ;] € R"* is a diagonal
matrix with diﬂ‘ = Z?:l Si,j

5: Compute the p eigenvectors vi,...,v, of L whose
corresponding eigenvalues are the p largest ones and
form the matrix V' = [vy,...,v,] € R"*P, ie., with
the eigenvectors as columns of V

6: Train a neural network M (structure in Table |I) that maps
x; to v;, (row 7 of matrix V')

Algorithm 3 Inference (clustering) procedure of PSC

Input: X = {z1,...,%n, Tpt1,..-, Lotrm}: 1 + m data
points. The first n data points are available initially; the
extra m data points need to be clustered but available after
model training

Input: A trained model M

Output: C = {c1,...,Cn,Cny1,-.
of n 4+ m data points in X

1: for i =1ton+mdo

2: u; < M(CEZ)

3: Apply a base clustering algorithm (e.g., k-means) to
cluster data points w1, ..., U, ,. The output cluster IDs
Cl,...,Cpym fOr wy, ..., Upqy, is that of the data point
for x4, ..

., Cntm }: the cluste IDs

L) wn+m

generated, we construct the Laplacian matrix L and compute
v1,..., v, the p eigenvectors of L whose eigenvalues are the
largest. We create a matrix V' = [v; ;] € R”*P where the ith
row in matrix V is denoted as v;,. This matrix V is a crucial
component in the subsequent training phase.

The second step aims to train a supervised learning model
M that maps a training instance x; to v, the ¢th row of
matrix V/, in which the columns are the p largest eigenvectors
of the Laplacian matrix L. In other words, the model M
learns to project a data instance onto the directions of the
p most important principal components. We apply a simple
multilayer perceptron (MLP) for the model M, whose structure
is illustrated in Table [l However, it can be easily replaced
with other neural networks or supervised learning models.

The training procedure for the parametric spectral clustering
algorithm is given in Algorithm

C. Parametric Spectral Clustering — Inference

Regarding the inference or clustering phase in PSC, we
aim to efficiently cluster an instance x;, even if x; does not
appear in the initial training data. The model M obtained
in the training phase converts each x; into u;, which serves
as an approximation of the p most significant representations
of x;. Using this transformation, we can efficiently emulate
the computations performed in lines 1 to 4 of Algorithm [I]
eliminating the need to construct large similarity and Lapla-
cian matrices and perform computationally expensive matrix
operations and eigendecomposition. Consequently, we achieve
significant computational savings in time and space but still
generate low-dimensional embeddings for the data points x;-s
that well preserve the main characteristics.

Once each instance x; has been transformed into w;, we
apply a base clustering algorithm, e.g., k-means, on u;-s. The
resulting cluster assignments for w;-s are then considered
cluster assignments for x;-s. We follow the convention by
employing the popular k-means algorithm as the clustering
method for the low-dimensional data points. However, other
base clustering algorithms, e.g., DBSCAN and the Gaussian
Mixture Model, can also be applied.

Algorithm [3| gives the inference/clustering procedure.

IV. EXPERIMENTS

A. Experimental datasets

We conducted experiments on both tabular datasets and
image datasets. The tabular datasets include the famous Iris,
Wine, and BreastCancer datasets. The image datasets include
UCIHW, MNIST, and Fashion-MNIST.

B. A Comparison of Clustering Quality

We would like to know whether PSC’s clustering result is
comparable to SC. We compare the SC and PSC’s clustering
results based on clustering accuracy (ClusterAcc), adjusted
rand index (ARI), and adjusted mutual information (AMI).

Since the experimental datasets contain ground-truth labels,
we use these labels to evaluate the quality of a clustering
algorithm. However, a clustering algorithm may assign an
arbitrary label to each cluster it forms. Therefore, the standard
accuracy computation usually underestimates the clustering
result. For example, given 5 instances with ground-truth labels
as [1,1,2,2,3], if a clustering algorithm assigns their cluster
IDs as [2,2,3, 3, 1], the standard accuracy computation outputs
0% because none of the predicted cluster IDs matches the
ground-truth labels. However, a careful reexamination reveals
that the clustering is perfect because all instances of the same
ground-truth class belong to the same predicted cluster (and
vice versa). Essentially, if two labeled lists are given, and one
can become another simply by remapping the label IDs, the
cluster assignments of the two lists are identical. In the above
example, remapping labels 2 to 1, 3 to 2, and 1 to 3 for the
second list makes the two lists identical. As a result, we define
the clustering accuracy based on the equation below.

A COMPARISON OF THE CLUSTERING QUALITY OF SPECTRAL CLUSTERING AND PARAMETRIC SPECTRAL CLUSTERING. WE REPORT THE MEAN +

TABLE 11

STANDARD DEVIATION FOR EACH SCORE.

\ e \ PSC
| ClusterAcc ARI AMI | ClusterAcc ARI AMI
Iris 0.8894+0.00 0.712 4 0.00 0.77 £ 0.00 0.92+£0.025 0.781+£0.06 0.813 +0.038
Wine 0.963 £ 0.00 0.876 £ 0.00 0.855 + 0.00 0.966 £ 0.02 0.892 £0.061 0.875+£0.071
BreastCancer 0.953 £ 0.00 0.819 £ 0.00 0.732 £ 0.00 0.932+£0.018 0.745+£0.062 0.632+£0.071
UCIHW 0.801 +0.067 0.743 +£0.078 0.858 £0.026 | 0.825+0.061 0.764 +0.055 0.855 4 0.026
MNIST 0.794 £ 0.04 0.748 £ 0.03 0.842 £0.013 | 0.775 4 0.046 0.73 £ 0.049 0.839 £0.013
Fashion-MNIST | 0.609 £0.015 0.484 £0.009 0.644 £0.009 | 0.615+£0.041 0.475£0.028 0.634 £ 0.009
TABLE III Raw images are often characterized by complex structures,

THE NETWORK STRUCTURE OF THE AUTOENCODER TO CONVERT IMAGES
IN MNIST INTO EMBEDDINGS (w: WIDTH OF INPUT IMAGE; h: HEIGHT OF
INPUT IMAGE).

Layer Type Input shape Output shape Activation

1 Flatten (w, h) w X h ReLU

2 Linear w X h 1568 ReLU

3 Linear 1568 784 ReLU

4 Linear 784 392 ReLU

5 Linear 392 49 None

6 Linear 49 392 ReLU

7 Linear 392 784 ReLU

8 Linear 784 1568 ReLU

9 Linear 1568 w X h None

10 Unflatten w X h (w, h) None

1 n
ClusterAcc(y,9y) ;= max < — I (g(“ = y(i))
9= e 10D ,

ey
where y = [y™),...,y(™] is the list of ground-truth labels
of size n, § = [§V,...,9™)] is a list of predicted cluster
IDs, P(g) returns a set of all identical lists for g, I() is an
indicator function, and § = [y"), ..., (] is an identical list
of ¢. In other words, we compute the accuracies based on
the ground-truth label list with all the identical lists of the
prediction and return the largest accuracy score.

In addition to clustering accuracy, we also use ARI and
AMI to evaluate the quality of the clustering results. ARI and
AMI are biased towards different clustering assignments: ARI
likes a balanced partition [22], and AMI favors an unbalanced
partition. We report both to fairly assess different situations.

Since both SC and PSC are nondeterministic, executing either
multiple times on a consistent dataset produces varied clustering
outcomes. To fairly evaluate each method, we conduct each
experiment 5 times and subsequently present the mean and
standard deviation derived from these 5 trials.

Table [[I] gives the three quality measurements for the SC
and PSC clustering results in the six datasets. SC and PSC
yield comparable results on all datasets. Interestingly, PSC
sometimes outperforms SC even though PSC approximates
the low-dimensional representations computed by SC. This is
probably because the learning process implicitly introduces
regularization factors so that PSC learns a better mapping.

which hinders the effectiveness of traditional clustering algo-
rithms. Therefore, we applied an autoencoder as a preprocessing
step to extract the essential information of each image in the
MNIST dataset into a compact vector that captures the critical
patterns in an image. The structure of the autoencoder is shown
in Table We use the bottleneck layer (the output of layer 5
in Table [ITI) as the compact representation of the input image.
Fashion-MNIST images are more complicated than MNIST, so
we use an image autoencoder to convert images into vectors
so that the spatial structures are reserved. Table [[V| gives the
structure of the image autoencoder. We use the output of layer
7 as the extracted features.

Regarding the hyperparameters, we define ni,n9,n3 (as
specified in Table [I) as follows: 32, 64, 32 for the Iris
dataset; 26, 52, 26 for the Wine dataset; 60, 120, 60 for
the BreastCancer dataset; 196, 392, 196 for both the MNIST
dataset and the Fashion-MNIST. While further fine-tuning these
hyperparameters may yield better clustering results, we did
not spend much effort tuning them, as our primary focus is to
show that PSC can cluster big data.

C. Training Data Size, Clustering Quality, Empirical Execution
Time, and Empirical Memory Usage

In Section we have demonstrated the quality of SC
and PSC clustering using identical training instances. However,
because PSC utilizes a parametric model to map data points to
lower-dimensional representations, there exists an opportunity
to use a subset of the provided data points as training data for
PSC. Here, we investigate the efficiency and effectiveness of
PSC utilizing a subset of training instances.

In particular, this section compares execution time, peak
memory consumption, and clustering quality between SC and
PSC, considering the varying rates of training data sampling
for PSC. We use the MNIST dataset in this section for
experiments. Note that applying spectral clustering on the
MNIST dataset using a modern laptop is sometimes infeasible
due to the substantial memory requirements of the modern
spectral clustering algorithm. For example, if we want to
cluster the entire MNIST dataset (which contains 70,000
samples) using spectral clustering, a naive implementation
requires creating large matrices (e.g., D and L in Algorithm [IJ),
each of them with shape 70,000 x 70,000. If each entry is a

TABLE IV
THE CONVOLUTIONAL NEURAL NETWORK STRUCTURE OF THE AUTOENCODER TO CONVERT IMAGES IN FASHION-MNIST INTO EMBEDDINGS.

CLUSTERING QUALITY ON THE MNIST DATASET.

Layer Type Input shape Output shape Kernel num Kernel size Stride Padding with BN Activation
1 Conv. (w, h, 1) (w, h, 16) 16 5%x5 1 Same True ReLU

2 Pooling (w, h, 16) (w/2,h/2,16) None 2x2 2 Valid False None

3 Conv. (w/2,h/2,16) (w/2,h/2,32) 32 3x3 1 Same True ReLU

4 Pooling (w/2,h/2,32) (w/4,h/4,32) None 2x2 2 Valid False None

5 Conv. (w/4,h/4,32) (w/4,h/4,1) 1 3x3 1 Same False Sigmoid
6 ConvTranspose. (w/4,h/4,1) (w/4,h/4,32) 32 3x3 1 Same True ReLU

7 ConvTranspose. (w/4,h/4,32) (w/2,h/2,16) 16 3x3 2 Double True ReLU

8 ConvTranspose. (w/2,h/2,16) (w,h,1) 1 5x5 2 Double False Sigmoid

TABLE V

A COMPARISON OF SC AND PSC WITH DIFFERENT SAMPLING RATIOS IN TERMS OF THE EXECUTION TIME (SECONDS), PEAK MEMORY USAGE (MB), AND

Method Execution time (s) Peak memory usage (MB) ClusterAcc ARI AMI
SC 2462 5331 0.794 4+ 0.04 0.748 + 0.03 0.842 + 0.014
_ Training: 453 (] 82%) Training: 1032 (| 81%)
PSC(r=1/6) " fpference: 0.443 + 0.027 Inference: 92.83 + 1.965 0732+ 0076 0.684£0.068 0.792+0.03
_ Training: 533 (] 78%) Training: 1717 (| 68%)
PSC (r = 2/6) Inference: 0.419 £ 0.088 Inference: 92.63 & 2.09 0.739£0.089 0.68 +0.066 0.798 +0.02
. Training: 706 (] 71%) Training: 2532 (] 53%)
PSC (r=3/6) fnference: 0.437 + 0.048 Inference: 96.21 + 1.785 ~ 0-704+0.041 0.7120.044 0825 £ 0.016
_ Training: 1029 (| 58%) Training: 3328 (| 38%)
PSC (r=4/6) " Ynference: 0.379 £ 0.06 Inference: 96.54 £ 2.271 0770+ 0046 0.73£0.049 0.83940.013
ini . 0 N . .
PSC (r = 5/6) Laining: 1472 (| 40%) — Training: 4937 (| 77%) 0.8194+0.039 0.753+0.023 0.84 £ 0.01

Inference: 0.491 + 0.036

Inference: 96.5 4+ 2.15

single-precision floating point (4 bytes), a single matrix needs
4 bytes x 70,000% ~ 19.6 GB.

We empirically explore the influence of different training
data sampling rates on the clustering quality, execution time,
and memory utilization of parametric spectral clustering
when applied to the MNIST dataset. Table [V] describes the
experimental results. First, the training and inference duration
of the PSC is considerably faster than the execution time of
the SC. The PSC’s training process requires only a portion
of the training data, which is why it is faster than SC. The
inference time for PSC is almost negligible. Second, for
the same reason, the peak memory utilization during the
PSC’s training and inference stages remains below the SC’s
peak memory requirement. The peak memory consumption is
approximated using the memory profiler mprof E| Third, we
study the connection between the training data sampling rate
and the clustering quality achieved by the PSC. The results
demonstrate that increasing the sampling rate can lead to an
improvement in clustering quality. However, the enhancement
is not considerable, and the gap becomes insignificant when
the sampling rate exceeds a certain threshold. In essence, after
reaching this threshold, the incremental benefit arising from
including additional training instances becomes negligible and
can significantly increase the cost of training. Consequently, we
conclude that the PSC generates satisfactory clustering results

Uhttps://pypi.org/project/memory-profiler/

using more economical training resources without sacrificing
substantial clustering quality.

D. Quality and Computational Cost of Incremental Clustering

This section demonstrates the efficacy of PSC in handling
incremental clustering tasks.

We use a subset of 20, 000 instances from MNIST as initial
training data to train the PSC model. Subsequently, we simulate
an incremental clustering scenario by introducing incremental
batches of new instances that require clustering. Specifically,
we consider scenarios with additional samples of sizes 2,000,
4,000, 6,000, 8,000, and 10,000. PSC is requested to cluster
the initial 20,000 instances and the extra samples using the
model trained only on the initial 20,000 training instances,
thus fulfilling the incremental clustering.

The results of these incremental clustering simulations are
presented in Table[VI} As the number of newly arrived instances
increases, there are slight changes in both the clustering time
and the peak memory usage. This result validates that the
PSC exhibits remarkable efficiency for incremental clustering
tasks. Meanwhile, including more extra instances seems to
improve the clustering quality marginally. We suspect that more
instances may reveal a clearer pattern among different groups,
thereby increasing the quality of the clustering results. On
the contrary, SC is not able to manage incremental clustering.
Therefore, even adding a small number of data points requires
complete retraining, which is time consuming and memory
intensive.

https://pypi.org/project/memory-profiler/

TABLE VI

THE QUALITY AND COMPUTATION COST OF INCREMENTAL CLUSTERING WHEN THE NUMBER OF EXTRA INSTANCES VARIES

Size of extra instances Clustering time (s) Peak memory usage (MB) ClusterAcc ARI AMI
2,000 0.569 £ 0.012 239.8 £ 2.949 0.738 £0.045 0.675+£0.054 0.811 £ 0.022
4,000 0.59 + 0.026 198.6 + 3.66 0.74 +£0.042 0.705 4+ 0.022 0.82+0.01
6,000 0.634 £ 0.022 207.9 + 3.145 0.745+£0.071 0.673£0.099 0.816 £ 0.032
8,000 0.681 £ 0.095 262.4 + 4.366 0.744 £0.052 0.705£0.039 0.826 £ 0.018
10,000 0.659 £ 0.058 272.7 £ 3.838 0.795£0.057 0.739£0.072 0.844 £ 0.026
V. DISCUSSION [2] J. Kleinberg, “An impossibility theorem for clustering,” Advances in

In this paper, we have proposed an innovative approach
called parametric spectral clustering to address the limitations
of traditional spectral clustering in the handling of large datasets
and the support of incremental clustering. By leveraging a com-
bination of training with a subset of instances and efficient low-
dimensional projection, the PSC achieves efficient computation
and economical memory usage while maintaining competitive
clustering accuracy. Furthermore, we have demonstrated the
effectiveness of PSC through extensive experiments on various
datasets. Our results show that the PSC outperforms traditional
spectral clustering regarding computational efficiency and peak
memory usage. Additionally, we have validated the applicability
of PSC in online clustering scenarios, where new data points
can be clustered on the fly without retraining the entire model.
Overall, our contribution extends the application of spectral
clustering to domains with big data and real-time clustering
requirements, thus opening up new possibilities for efficient
and effective nonlinear clustering in various fields.

As an ongoing work, we are developing a user-friendly
library that provides a scikit-learn-like interface for PSC.
Users can use PSC with the commands psc.fit (X) and
psc.predict (X) to cluster the data points. This library
will simplify the implementation and usage of PSC, offering
seamless integration with existing machine learning workflows.
By providing accessible tools and resources, we aim to
empower a broader range of users, including practitioners
and researchers with varying levels of expertise in machine
learning and data analysis, to explore the potential of PSC in
their projects. This will facilitate greater adoption and further
advances in the field, fostering collaboration and knowledge
exchange among the research community.

A potential issue with the PSC is its inefficiency in adapting
to data drift. The computation of a new instance’s ground-truth
embedding through eigendecomposition in spectral clustering
makes the acquisition of ground-truth labels for training targets
resource-intensive. Therefore, developing methods to efficiently
manage data drift is a direction we are eager to explore.

ACKNOWLEDGEMENT
We appreciate support from National Science and Technology
Council of Taiwan under grant 110-2222-E-008-005-MY 3.
REFERENCES

[1] C.-Y. Lien, G.-J. Bai, and H.-H. Chen, “Visited websites may reveal
users’ demographic information and personality,” in IEEE/WIC/ACM
International Conference on Web Intelligence, 2019, pp. 248-252.

[3]

[4]

[5]

[6]

[7]

[8]
[9

—

[10]

(11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

(21]

(22]

neural information processing systems, pp. 463—470, 2003.

R.-Y. Wang and H.-H. Chen, “Detecting inactive cyberwarriors from
online forums,” in IEEE International Conference on Web Intelligence,
2023.

G.-]. Bai, C.-Y. Lien, and H.-H. Chen, “Co-learning multiple browsing
tendencies of a user by matrix factorization-based multitask learning,”
in IEEE/WIC/ACM International Conference on Web Intelligence, 2019,
pp. 253-257.

D. Y. Wu, T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, and H.-H.
Chen, “Detecting inaccurate sensors on a large-scale sensor network
using centralized and localized graph neural networks,” IEEE Sensors
Journal, vol. 23, no. 15, pp. 16446-16455, 2023.

T.-H. Lin, X.-R. Zhang, C.-P. Chen, J.-H. Chen, and H.-H. Chen,
“Learning to identify malfunctioning sensors in a large-scale sensor
network,” IEEE Sensors Journal, vol. 22, no. 3, pp. 2582-2590, 2021.
A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14,
2001.

U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, pp. 395-416, 2007.

J. Shi and J. Malik, “Normalized cuts and image segmentation,” /EEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888-905, 2000.

X. Zhu, S. Zhang, Y. Li, J. Zhang, L. Yang, and Y. Fang, “Low-rank
sparse subspace for spectral clustering,” IEEE Transactions on knowledge
and data engineering, vol. 31, no. 8, pp. 1532-1543, 2018.

R. Couillet and F. Benaych-Georges, “Kernel spectral clustering of large
dimensional data,” 2016.

W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel
spectral clustering in distributed systems,” IEEE transactions on pattern
analysis and machine intelligence, vol. 33, no. 3, pp. 568-586, 2010.
S. Ding, E. Wu, J. Qian, H. Jia, and F. Jin, “Research on data stream
clustering algorithms,” Artificial Intelligence Review, vol. 43, pp. 593—
600, 2015.

C. C. Aggarwal, “A survey of stream clustering algorithms,” in Data
Clustering. Chapman and Hall/CRC, 2018, pp. 231-258.

W. Barbakh and C. Fyfe, “Online clustering algorithms,” International
Jjournal of neural systems, vol. 18, no. 03, pp. 185-194, 2008.

C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for
clustering evolving data streams,” in Proceedings 2003 VLDB conference.
Elsevier, 2003, pp. 81-92.

F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in Proceedings of the 2006 SIAM
international conference on data mining. SIAM, 2006, pp. 328-339.
T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” ACM sigmod record, vol. 25,
no. 2, pp. 103-114, 1996.

J. Montiel, H.-A. Ngo, M.-H. Le-Nguyen, and A. Bifet, “Online clus-
tering: Algorithms, evaluation, metrics, applications and benchmarking,”
in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022, pp. 4808—4809.

D. Yan, L. Huang, and M. I. Jordan, “Fast approximate spectral clustering,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 907-916.

M. Li, X.-C. Lian, J. T. Kwok, and B.-L. Lu, “Time and space efficient
spectral clustering via column sampling,” in CVPR 2011. 1EEE, 2011,
pp. 2297-2304.

S. Romano, N. X. Vinh, J. Bailey, and K. Verspoor, “Adjusting for chance
clustering comparison measures,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 4635-4666, 2016.

	Introduction
	Related Work
	Methodology
	Preliminary: Spectral Clustering
	Parametric Spectral Clustering – Training
	Parametric Spectral Clustering – Inference

	Experiments
	Experimental datasets
	A Comparison of Clustering Quality
	Training Data Size, Clustering Quality, Empirical Execution Time, and Empirical Memory Usage
	Quality and Computational Cost of Incremental Clustering

	Discussion
	References

