
The Effectiveness of Graph Contrastive Learning
on Mathematical Information Retrieval⋆

Pei-Syuan Wang and Hung-Hsuan Chen[0000−0001−5137−4449]

National Central University, Taoyuan, Taiwan
peistu13333@gmail.com, hhchen1105@acm.org

Abstract. This paper details an empirical investigation into using Graph
Contrastive Learning (GCL) to generate mathematical equation rep-
resentations, a critical aspect of Mathematical Information Retrieval
(MIR). Our findings reveal that this simple approach consistently ex-
ceeds the performance of the current leading formula retrieval model,
TangentCFT. To support ongoing research and development in this
field, we have made our source code accessible to the public at https:
//github.com/WangPeiSyuan/GCL-Formula-Retrieval/.

Keywords: Mathematical information retrieval · Graphical contrastive
learning · Layout.

1 Introduction

Search engines have revolutionized information access, enabling users to locate
relevant textual content from the Internet quickly. Meanwhile, academic search en-
gines and digital libraries, such as Google Scholar, CiteSeerX, and PubMed [3,21],
have become indispensable tools in the academic field, allowing researchers to
discover related works from a vast amount of documents. Although a general-
purpose search engine and an academic search engine may use different strategies
to evaluate the quality of a document (e.g., a search engine may analyze the
hyperlink structures to infer the importance of a webpage, while an academic
search engine may rely on the citation counts to gauge the quality of a paper [4]),
they often rely on similar strategies to define the relevance score between a
query term and a document. Popular techniques include term frequency statistics
(e.g., TFIDF and its variants [9]) and distributed representations learning (e.g.,
Word2Vec, fastText, and Transformer [15]).

Mathematical formulas commonly play a central role in scientific papers,
facilitating the precise expression of abstract ideas. It is crucial to develop
methodologies that can effectively retrieve documents that contain mathematical
formulas similar to a target formula. Unfortunately, the search for mathemat-
ical formulas is very different from a regular text-based search. While textual
search algorithms focus primarily on word frequencies, syntactic structures, and
⋆ We appreciate support from the National Science and Technology Council of Taiwan

under grant 110-2222-E-008-005-MY3.

https://github.com/WangPeiSyuan/GCL-Formula-Retrieval/
https://github.com/WangPeiSyuan/GCL-Formula-Retrieval/

2 Wang and Chen

semantic associations, formula search requires a more profound comprehension
of mathematical expressions, their inherent structures, and relationships between
mathematical entities. Developing mathematical information retrieval (MIR)
algorithms involves two main challenges. First, the model needs to capture the
notation structure effectively. In MIR, the notation structure is perhaps more
critical than string matching and term frequencies. For example, the quadratic
equations ax2 + bx + c = 0 and αθ2 + βθ + γ = 0 may convey the same con-
cept, although they contain very different symbols. However, their structures are
identical if we represent both equations using parse trees. Second, the labeled
relevance score between pairs of mathematical formulas is needed for supervised
training. Unfortunately, such datasets are limited. As a result, it could be difficult
to apply machine-learned ranking (a.k.a. learning-to-rank) [13] methodologies.
These obstacles make MIR still an extremely challenging task.

In this paper, we experiment with applying graph contrastive learning (GCL)
on the graph generated from the formula structure to capture the notation
structure without the help of labeled relevance scores between formulas, thus
addressing the above two challenges. We define the similarity score between each
pair of formulas based on the cosine similarity between their embeddings. We
conduct experiments using the NTCIR-12 MathIR Wikipedia Formula Browsing
Task [24]. Experimental results show that our model consistently outperforms the
TangentCFT model [14], the state-of-the-art model for retrieving mathematical
formulas. Note that our study focuses exclusively on models that rely solely on
mathematical formulas for MIR. Therefore, models like MathBERT or Coco-
MAE [16,26], which also incorporate additional information such as contextual
texts, fall outside the scope of our analysis.

2 Related Work

This section reviews various methodologies in mathematics information retrieval,
with a particular focus on TangentCFT, a state-of-the-art mathematics informa-
tion retrieval method.

2.1 Analyze formula using text

Text-based MIR methods convert mathematical formulas into text formats such
as LATEXand MathML and use text similarity measures to assess the similarity
between formulas. An example of this approach is the TF-IDF-based method
called Math Indexer and Searcher (MIaS) [17]. It represents formulas in MathML
format within an XHTML document and considers text and math formula
components. However, this method largely overlooks mathematical formulas’
structural and semantic aspects and relies mainly on a textual comparison based
on words and their frequencies.

Other approaches employ complex natural language processing models to han-
dle semantic retrieval. For example, Thanda et al. [20] utilized the PV-DBOW
model to learn the embeddings of text paragraphs. Gao et al. [7] proposed

The Effectiveness of Graph Contrastive Learning on MIR 3

the symbol2vec and formula2vec models, which are based on the Continuous
Bag-of-Words (CBOW) and Doc2Vec architectures [15,12], respectively, to learn
embeddings. These approaches generally transform formulas into vector rep-
resentations using semantic representation methods. However, these methods
minimally consider the structure of the formulas.

2.2 Analyze formula using graph/tree

Tree-based methods consider the symbol structure and arrangement of mathe-
matical formulas by representing them in a structured format, such as a Symbol
Layout Tree (SLT) or an Operator Tree (OPT), and compare the similarity of
the structures to perform retrieval.

Among tree-based methods, some compared the similarity of two tree struc-
tures by matching paths from the root node to the child nodes [8,25]. However,
a successful match requires complete matching of root-to-leaf paths. Yokoi et
al. [22] propose a more flexible method by extracting subpaths from the root
node to the child nodes and performing matching based on these subpaths, thus
increasing the success rate of matching. The MCAT method [11] used both OPT
and SLT for path extraction, incorporating path features and information about
the sibling nodes, combined with text-based search, to achieve better results.
Another method, Approach0 [27], used only OPT for path extraction, generat-
ing paths representing subexpressions of mathematical formulas. The similarity
calculation is based on the largest common subexpression among the formulas.

2.3 Integrating both formulas and contextual texts

Some studies leveraged the formulas and contextual texts for math information
retrieval. For example, MathBERT [16], motivated by the success of pre-trained
language models in natural language processing, utilized math formula, its
layout, and the contextual texts into a Transformer for training. Coco-MAE [26]
integrated the formula and textual information by contrastive learning. These
studies leverage mathematical expressions and contextual texts, often leading to
promising results in precision and recall.

2.4 TangentCFT

TangentCFT analyzes a formula based only on the formula but not the contextual
text. TangentCFT begins by representing mathematical formulas using OPT and
SLT. Next, TangentCFT traverses the tree and converts the paths in the tree
into tuple sequences. These paths are then encoded and used to train embeddings
using the fastText model [1]. Finally, mathematical formula embeddings are
obtained by averaging the embeddings of the tuples in a formula.

To the best of our knowledge, when considering the retrieval of mathemat-
ical formulas without leveraging contextual text information, TangentCFT is
among the effective models currently available [16]. Therefore, this paper uses
TangentCFT as the baseline model and compares it with our approach.

4 Wang and Chen

Source
Formulas

Graph
structure
generator

OPT
tuple

SLT
tuple

Node
embedding
generator

Nodes’
embeddings

Graph
Contrastive

Learning

Source
Formulas’

embeddings

Offline processing

Query
formula’s

embedding

Cosine
similarity

Receive a list
of retrieved

formulas

Online query

Formula
embedding
generator

(1) Submit a
query

formula, e.g.,
𝑒!" + 1 = 0

User
(2)

(3)

(3)

(4)

Fig. 1. The online and offline processing of the entire framework

3 Methodology

We introduce the offline processing module and the online query module in this
section. Figure 1 gives an overview of the whole workflow.

3.1 Offline Processing Module

The offline processing module includes a graph structure generator that out-
puts the OPT and SLT of a formula. We use TangentCFT to generate node
(token) embedding, which will be the input of the graph contrastive learning
models. The graph contrastive learning models generate formula embeddings
based on contrastive learning; thus, the relevance scores between formula pairs
are unnecessary. This section details the entire offline processing module.

Graph Structure Generator A mathematical symbol sequence can form
graphs expressing semantic relationships between symbols. This study employs
two graph structures to represent the relationship of the symbols in a math-
ematical formula: Symbol Layout Tree (SLT) and Operator Tree (OPT) [6].
The SLT is used primarily to indicate the spatial positioning of mathematical
symbols in a written form. The OPT, on the other hand, is mainly used to
capture the semantics of mathematical formulas. The OPT represents operators
by an intermediate node, and the child nodes represent operands. Through the
commutativity or associativity of operators, mathematically equivalent formulas
with different appearances exhibit the same OPT structure.

The Effectiveness of Graph Contrastive Learning on MIR 5

𝑎 + 𝑏 = 0

3 2

(a) SLT example

𝑎

+

=

0

3

^

𝑏 2

^

(b) OPT example

Fig. 2. The examples of the SLT and OPT representations of the formula a3 + b2 = 0

Table 1. A comparison of the properties of the graph contrastive learning models.

InfoGraph GraphCL BGRL

Requires negative pairs Y Y N
Requires graph augmentation N Y Y

Contrastive pairs Graph to node Graph to graph Node to node
Number of encoders 1 1 2

For example, given a formula a3 + b2 = 0, Figure 2 gives its SLT and OPT
representations: SLT generates a graph that better preserves the layout of the
writing, whereas the output of OPT captures the semantics of the equation.

Token Embedding Generator We may define the features for the nodes and
edges of the SLT and OPT. For example, we could define a feature for a node
that specifies whether the token represents an operator or operand. However,
manually defining features can be tedious and perhaps subjective. Eventually,
we decided to take advantage of the node and edge characteristics described in
TangentCFT [14] and apply fastText [1] to the paths sampled by random walks
to generate the embeddings for the nodes. We set each output embedding length
to 100. These node embeddings are the building blocks for graph embeddings,
which are representations of the formulas, as described below.

Formula Embedding Generator and Graph Contrastive Learning To
generate formula embeddings, we need to assemble the node embeddings. There
are at least two different ways to do it. The first is to compute the elementwise
average for each node embedding in a graph, as TangentCFT does [14]. However,
the simple average may be too naïve because the relationship among the math
symbols (i.e., nodes) is missing. Another possibility is using the downstream
task label as the ground truth and applying backpropagation to learn how to
integrate the token embeddings. Unfortunately, our task has a limited number of
relevance scores between pairs of formulas. Therefore, learning to integrate token
embeddings based on a few labels will likely overfit the training data.

6 Wang and Chen

Eventually, we decided to employ graph contrastive learning methods to learn
the embeddings of the formulas. GCL generates positive and negative graph
pairs by manipulating the graph structures. Thus, the relevance score is not
needed during training. We experimented with three representative GCL models:
InfoGraph [18], GraphCL [23], and Bootstrapped Graph Latents (BGRL) [19].
Since these models require no training labels, we can generate the formula
embedding even if a formula does not appear in the training data.

The InfoGraph model processes multiple graphs in one batch. InfoGraph
learns to generate the local node embeddings and the global graph embeddings
simultaneously such that a node ni and a graph gj have high mutual information
if ni ∈ gj and low mutual information otherwise. An advantage of InfoGraph
is that it does not rely on graph augmentation techniques. However, InfoGraph
assumes that a node’s embedding alone can discriminate its belonging graph and
other graphs, which could be an over-strong assumption.

The GraphCL model generates a positive graph pair by augmenting a given
graph based on, for example, node dropping and edge perturbation. GraphCL
regards a negative graph pair by the augmented graphs of two distinct graphs.
The loss function encourages positive graph pairs to have similar embeddings and
negative graph pairs to have dissimilar embeddings. Although such a technique
works exceptionally well in computer vision [5], the data augmentation techniques
used in graphs may merit further discussion. For example, in image classification,
an image after standard augmenting procedures (e.g., rotating or resizing) would
still likely be regarded as having the same label. However, standard graph-
augmentation techniques make the graphs structurally different, especially when
a graph is small. As a result, the performance of GraphCL may be substantially
influenced by the graph-augmenting procedure.

Finally, the BGRL requires only positive pairs generated by graph augmen-
tation. BGRL alleviates the need for negative pairs by applying two distinct
encoders: one’s parameters are learned via direct backpropagation, and the other’s
parameters are updated by an exponential moving average of the parameters
in the first encoder. Although BGRL is highly scalable because it requires no
negative pairs, BGRL still needs graph augmentation, which could still be an
issue, as discussed above.

Table 1 compares these popular GCL models. Since each has its strengths
and weaknesses, we tested all of them as formula embedding generation methods.

3.2 Online Query Module

A user submits to the system a query formula, which is used by the online
query module to generate the query embedding based on the formula embedding
generator trained offline. The system computes the cosine similarity between the
query formula’s embedding and each source formula’s embedding. Finally, the
system returns a list of the matched formulas by ranking the cosine similarities
in descending order.

The Effectiveness of Graph Contrastive Learning on MIR 7

4 Experiments

4.1 Experimental Dataset and Evaluation Metrics

We used the NTCIR-12 MathIR Wikipedia Formula Browsing Task [24] as the
data source for evaluation. Each relevance score is an integer between 0 and 4.

We used binary preference (bpref) and normalized discounted cumulative
gain (nDCG) to evaluate the relevance of the returned formulas.

The bpref score evaluates a binary retrieval task (relevant/irrelevant) with
incomplete information, i.e., the relevance scores of some documents can be
unlabeled [2]. The bpref is a perfect evaluation score in our case because the
relevance scores between most pairs of documents are unlabeled in our dataset
(we have only 1, 202 labeled relevance scores). We consider a pair of documents
relevant if their relevance score is 3 or 4; otherwise, they are irrelevant.

The definition of bpref is given in Equation 1.

sbpref =
1

R

∑
r

(
1− |n is ranked higher than r|

min(R,N)

)
, (1)

where R and N represent the counts of relevant and irrelevant documents,
respectively, with r as a relevant and n as an irrelevant document.

Although a binary judgment (relevant/irrelevant) is probably more straight-
forward for human evaluation [10], it fails to capture a fine-grained assessment.
Therefore, we also applied the nDCG evaluation metrics because it allows for a
graded relevance score. Equation 2 shows the formula of the nDCG score, which
is the DCG score normalized by the ideal DCG score.

snDCG =
sDCG

sIDCG
, (2)

where sIDCG is the score of sDCG when the top-K documents are perfectly ordered
(i.e., they are ordered according to the relevance score in descending order). The
DCG score is computed by Equation 3.

sDCG =

K∑
i=1

ri
log2(i+ 1)

, (3)

where ri denotes the ith document’s relevance score in the list (ri ∈ {0, 1, 2, 3, 4}),
and K is the count of returned documents (K = 1, 000 in this experiment).

The nDCG is valid only with all returned documents scored for relevance. We
filter out unjudged formulas from the list. Given each query has at most 90 judged
formulas, and our K = 1, 000 exceeds this, we utilize all judged documents.

In general, the nDCG score measures the effectiveness of a ranking algorithm
by considering the relevance and position of items in a ranked list. It places a
higher emphasis on the top positions. Additionally, nDCG accommodates graded
relevance judgments, allowing for finer distinctions in the relevance of items.
Meanwhile, the bpref allows unjudged documents in the list, and the binary
judgment is likely more intuitive for most evaluators. Since the two metrics assess
the quality of ranked lists from different perspectives, we use both for evaluations.

8 Wang and Chen

Table 2. The bpref scores of applying different models on SLT layout, OPT layout,
and F1 score of the above two. TangentCFT is the baseline; InfoGraph, BGRL, and
GraphCL are GCL models used by our approach.

Model SLT OPT F1

TangentCFT 0.680± 0.0053 0.660± 0.0064 0.670
InfoGraph 0.691± 0.0066 0.685± 0.0070 0.688

BGRL 0.701± 0.0089 0.683± 0.0077 0.692
GraphCL 0.685± 0.0090 0.703± 0.0072 0.694

Table 3. The nDCG scores of applying different models on SLT layout, OPT layout,
and F1 score of the above two. TangentCFT is the baseline; InfoGraph, BGRL, and
GraphCL are GCL models used by our approach.

Model SLT OPT F1

TangentCFT 0.841± 0.0032 0.830± 0.0041 0.835
InfoGraph 0.860± 0.0036 0.851± 0.0063 0.855

BGRL 0.851± 0.0075 0.827± 0.0078 0.839
GraphCL 0.855± 0.0029 0.864± 0.0065 0.859

4.2 Quantitative result

Table 2 and Table 3 present the quantitative evaluation results of the bpref and
nDCG scores when applying different GCL models on either the SLT or OPT
layouts. We repeat each experiment 5 times and report the mean and standard
deviation in these tables. We also report the F1 score for the mean of SLT
and the mean of OPT scores. Both the bpref and the nDCG metrics indicate
that our self-supervised graph contrastive learning consistently achieves better
retrieval performance than TangentCFT, and the results are very stable (since the
standard deviations are close to 0). In particular, the bpref score implies that, on
average, the genuinely relevant formulas retrieved by our model rank higher than
irrelevant ones more often when compared to the state-of-the-art TangentCFT.
The nDCG scores also indicate that our method is better at ranking the most
relevant formulas near the top.

Interestingly, various GCLs are more effective with different layouts: GraphCL
works better when OPT is used, while InfoGraph and BGRL are more successful
when using SLT. We show the F1 score in the last columns of Table 2 and Table 3
to show the average effectiveness of each model on different layouts.

4.3 Case Study

This section shows the top retrieved formulas for two highly distinct query
formulas. The first query involves a big-O expression with a logarithmic operation.
Big-O notation is common in analyzing algorithms’ time complexity. The inclusion
of the log operation introduces mathematical complexity. Retrieving relevant

The Effectiveness of Graph Contrastive Learning on MIR 9

Table 4. The top returns of various models when querying “O(mn logm)” (using SLT
as the layout for graph construction.)

Rank InfoGraph GraphCL BGRL

1 O(mn logm) O(mn logm) O(mn logm)
2 O(V E log V) O(n logm) O(m logn)
3 O(nk log k) O(m logn) O(n logm)
4 O(KN logN) O(mn) O(mn)
5 O(m+ logn) O(mn) O(mn)

Table 5. The top returns of various models when querying “O(mn logm)” (using OPT
as the layout for graph construction.)

Rank InfoGraph GraphCL BGRL

1 O(mn logm) O(mn logm) O(mn logm)
2 O(n logm) O(n logm) O(mn)
3 O(m logn) O(mn log(mn)) O(Mr)
4 O(n log k) O(m2n logn) O(mnp)
5 O(mn) O(m logn log logn) Θ(mn)

results for such queries evaluates a model’s capacity to deal with logarithmic
functions, multiplications, and the big-O notation. The second query is an
equation represented in matrix form. Equations involving matrices are prevalent
in various scientific and engineering fields, including linear algebra, physics, and
computer graphics. Retrieving relevant results for matrix equations is essential in
applications like solving linear systems or optimizing operations on large datasets.

Tables 4 and 5 show the top-5 returns of the GCL models for the query with
the big-O and logarithm expression. All the best-matched formulas are precisely
the query formula. Additionally, all returns involve the big-O notation, except the
5th return of BGRL using OPT, which retrieves a highly relevant big-Θ notation.
Also, some formulas with semantics identical to “O(mn logm)” but using different
symbols, such as O(V E log V) or O(KN logN), are retrieved, indicating that
these models effectively handles polynomials, logarithm, and the big-O notation.

Table 6 and Table 7 show the top-5 formulas retrieved from the query with
the matrix equation. We arrive at the same findings as in the previous case. First,
all the top returns are the same as in the query formula. Moreover, the top-5
returns of the models using SLT and OPT as the layout for graph construction
all contain matrices, except the 5th return of GraphCL using SLT. In addition,
models can retrieve semantically similar formulas with different symbols.

5 Discussion

In this study, we investigate graph contrastive learning for formula retrieval to
address two challenges of mathematical information retrieval: the model needs to

10 Wang and Chen

Table 6. The top returns of various models when querying “
[
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

]
”

(using SLT as the layout for graph construction.)

Rank InfoGraph GraphCL BGRL

1
[
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

] [
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

] [
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

]
2

[
V1

I1

]
=

[
A B
C D

] [
V2

−I2

] [
h11 h12

h21 h22

] [
I1
V2

]
=

[
g11 g12
g21 g22

] [
V1

I2

]

3
[
I1
V2

]
=

[
g11 g12
g21 g22

] [
V1

I2

]
s(3,2,2,1) =

∣∣∣∣∣∣∣∣
h3 h4 h5 h6

h1 h2 h3 h4

1 h1 h2 h3

0 0 1 h1

∣∣∣∣∣∣∣∣ .
[
V1

I1

]
=

[
A B
C D

] [
V2

−I2

]

4
[
V1

V2

]
=

[
0 −r
r 0

] [
I1
I2

]  1

h11

−h12

h11
h21

h11

∆[h]

h11

 [
V2

I ′2

]
=

[
1 −R

−sC 1 + sCR

] [
V1

I1

]

5
[
h11 h12

h21 h22

]
h11 = V1

I1

∣∣∣
V2=0

[
h11 h12

h21 h22

]

capture the notation structure and the lack of relevance score between formula
pairs. We explore the potential of popular GCL methods, including InfoGraph,
GraphCL, and BGRL. We investigate the OPT and SLT graph layouts and their
influence on the retrieval results. We observe that the GCL models outperform
TangentCFT, a state-of-the-art formula retrieval model. However, TangentCFT
is still essential, as our GCL models utilize the node embeddings generated by
TangentCFT as the input for these GCL models. We also use case studies to
confirm that the methods can handle different formula queries.

To enrich the training instances and further enhance model robustness, future
work could explore the generation of new equations as positive training pairs
based on equation templates. For example, given a regular expression that
generates polynomial equations, each pair of these generated formulas could be
a potential positive pair. Another future work could be to improve the GCL
data-augmentation process. Current strategies, randomly adding or removing
nodes/edges from graphs generated from equations, may not always be ideal. Such
adjustments may alter the semantics of the equation and introduce structural
inconsistencies. Thus, we are also interested in developing more sophisticated
graph-augmentation strategies that preserve the meaning and structure of the
equation while increasing the diversity of training data.

References

1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Transactions of the association for computational linguistics
5, 135–146 (2017)

The Effectiveness of Graph Contrastive Learning on MIR 11

Table 7. The top returns of various models when querying “
[
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

]
”

(using OPT as the layout for graph construction.)

Rank InfoGraph GraphCL BGRL

1
[
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

] [
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

] [
V1

I2

]
=

[
h11 h12

h21 h22

] [
I1
V2

]
2

[
I1
V2

]
=

[
g11 g12
g21 g22

] [
V1

I2

] (
I1
I2

)
=

(
Y11 Y12

Y21 Y22

)(
V1
V2

) [
I1
V2

]
=

[
g11 g12
g21 g22

] [
V1

I2

]

3
[
V1

V2

]
=

[
z11 z12
z21 z22

] [
I1
I2

]  1

h11

−h12

h11
h21

h11

∆[h]

h11

 [
I1
I2

]
=

[
y11 y12
y21 y22

] [
V1

V2

]

4
(
a1

b1

)
=

(
T11 T12

T21 T22

)(
b2
a2

) [
h11 h12

h21 h22

] [
K11 K12

K21 K22

] [
x1

x2

]
=

[
F1

F2

]

5
[
K11 K12

K21 K22

] [
x1

x2

]
=

[
F1

F2

] ∆[h]

h22

h12

h22
−h21

h22

1

h22

 (
A1 B1

A2 B2

)(
x
y

)
=

(
C1

C2

)
.

2. Buckley, C., Voorhees, E.M.: Retrieval evaluation with incomplete information. In:
Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval. pp. 25–32 (2004)

3. Caragea, C., Wu, J., Ciobanu, A., Williams, K., Fernández-Ramírez, J., Chen, H.H.,
Wu, Z., Giles, L.: Citeseer x: A scholarly big dataset. In: Advances in Information
Retrieval: 36th European Conference on IR Research, ECIR 2014, Amsterdam, The
Netherlands, April 13-16, 2014. Proceedings 36. pp. 311–322. Springer (2014)

4. Chen, H.H., Treeratpituk, P., Mitra, P., Giles, C.L.: Csseer: an expert recommen-
dation system based on citeseerx. In: Proceedings of the 13th ACM/IEEE-CS joint
conference on Digital libraries. pp. 381–382 (2013)

5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive
learning of visual representations. In: International conference on machine learning.
pp. 1597–1607. PMLR (2020)

6. Davila, K., Zanibbi, R.: Layout and semantics: Combining representations for
mathematical formula search. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp.
1165–1168 (2017)

7. Gao, L., Jiang, Z., Yin, Y., Yuan, K., Yan, Z., Tang, Z.: Preliminary exploration
of formula embedding for mathematical information retrieval: can mathematical
formulae be embedded like a natural language? arXiv preprint arXiv:1707.05154
(2017)

8. Hijikata, Y., Hashimoto, H., Nishida, S.: An investigation of index formats for the
search of mathml objects. In: 2007 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology-Workshops. pp. 244–248. IEEE
(2007)

9. Hsu, L.Y., Kao, C.H., Jheng, I.S., Chen, H.H.: Toward building an academic search
engine understanding the purposes of the matched sentences in an abstract. IEEE
Access 9, 109344–109354 (2021)

12 Wang and Chen

10. Kekäläinen, J.: Binary and graded relevance in ir evaluations—comparison of the
effects on ranking of ir systems. Information processing & management 41(5),
1019–1033 (2005)

11. Kristianto, G.Y., Topic, G., Aizawa, A.: Mcat math retrieval system for ntcir-12
mathir task. In: NTCIR (2016)

12. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International conference on machine learning. pp. 1188–1196. PMLR (2014)

13. Liu, T.Y., et al.: Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval 3(3), 225–331 (2009)

14. Mansouri, B., Rohatgi, S., Oard, D.W., Wu, J., Giles, C.L., Zanibbi, R.: Tangent-cft:
An embedding model for mathematical formulas. In: Proceedings of the 2019 ACM
SIGIR international conference on theory of information retrieval. pp. 11–18 (2019)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural
information processing systems 26 (2013)

16. Peng, S., Yuan, K., Gao, L., Tang, Z.: Mathbert: A pre-trained model for mathe-
matical formula understanding. arXiv preprint arXiv:2105.00377 (2021)

17. Sojka, P., Líška, M.: The art of mathematics retrieval. In: Proceedings of the 11th
ACM symposium on Document engineering. pp. 57–60 (2011)

18. Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization.
arXiv preprint arXiv:1908.01000 (2019)

19. Thakoor, S., Tallec, C., Azar, M.G., Azabou, M., Dyer, E.L., Munos, R., Veličković,
P., Valko, M.: Large-scale representation learning on graphs via bootstrapping.
arXiv preprint arXiv:2102.06514 (2021)

20. Thanda, A., Agarwal, A., Singla, K., Prakash, A., Gupta, A.: A document retrieval
system for math queries. In: NTCIR (2016)

21. Wu, J., Williams, K.M., Chen, H.H., Khabsa, M., Caragea, C., Tuarob, S., Ororbia,
A.G., Jordan, D., Mitra, P., Giles, C.L.: Citeseerx: Ai in a digital library search
engine. AI Magazine 36(3), 35–48 (2015)

22. Yokoi, K., Aizawa, A.: An approach to similarity search for mathematical expressions
using mathml. Towards a Digital Mathematics Library. Grand Bend, Ontario,
Canada, July 8-9th, 2009 pp. 27–35 (2009)

23. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive
learning with augmentations. Advances in neural information processing systems
33, 5812–5823 (2020)

24. Zanibbi, R., Aizawa, A., Kohlhase, M., Ounis, I., Topic, G., Davila, K.: Ntcir-12
mathir task overview. In: NTCIR (2016)

25. Zhong, W., Fang, H.: Opmes: A similarity search engine for mathematical content.
In: Advances in Information Retrieval: 38th European Conference on IR Research,
ECIR 2016, Padua, Italy, March 20–23, 2016. Proceedings 38. pp. 849–852. Springer
(2016)

26. Zhong, W., Lin, S.C., Yang, J.H., Lin, J.: One blade for one purpose: Advancing math
information retrieval using hybrid search. In: Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(2023)

27. Zhong, W., Zanibbi, R.: Structural similarity search for formulas using leaf-root
paths in operator subtrees. In: Advances in Information Retrieval: 41st European
Conference on IR Research, ECIR 2019, Cologne, Germany, April 14–18, 2019,
Proceedings, Part I 41. pp. 116–129. Springer (2019)

	The Effectiveness of Graph Contrastive Learning on Mathematical Information Retrieval

