
Classifying and Ranking Search Engine Results as
Potential Sources of Plagiarism

Kyle Williams‡, Hung-Hsuan Chen†, C. Lee Giles†‡
‡Information Sciences and Technology, †Computer Science and Engineering

Pennsylvania State University, University Park, PA 16802, USA
kwilliams@psu.edu, hhchen@psu.edu, giles@ist.psu.edu

ABSTRACT
Source retrieval for plagiarism detection involves using a
search engine to retrieve candidate sources of plagiarism for
a given suspicious document so that more accurate com-
parisons can be made. An important consideration is that
only documents that are likely to be sources of plagiarism
should be retrieved so as to minimize the number of unneces-
sary comparisons made. A supervised strategy for source re-
trieval is described whereby search results are classified and
ranked as potential sources of plagiarism without retrieving
the search result documents and using only the information
available at search time. The performance of the supervised
method is compared to a baseline method and shown to im-
prove precision by up to 3.28%, recall by up to 2.6% and
the F1 score by up to 3.37%. Furthermore, features are an-
alyzed to determine which of them are most important for
search result classification with features based on document
and search result similarity appearing to be the most impor-
tant.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.7.5 [Document
and Text Processing]: Document Capture—Document
Analysis; H.3.3 [Information Storage And Retrieval]:
Information Search and Retrieval

General Terms
Experimentation, Measurement, Performance

Keywords
Source retrieval; plagiarism detection; search result ranking;
query generation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DocEng’14, September 16–19, 2014, Fort Collins, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2949-1/14/09 ...$15.00.
http://dx.doi.org/10.1145/2644866.2644879.

1. INTRODUCTION
The advent of the Web has led to an exponential increase

in the amount of information that is publicly available and
accessible. This increase in information has had a num-
ber of benefits in important domains, such as healthcare,
education, disaster management and community involve-
ment. Search engines have become an important tool in
dealing with the exponentially increasing amount of infor-
mation available on the Web by allowing people to construct
queries that describe their information needs and effectively
retrieving search results that may satisfy those information
needs. However, in addition to the many positive effects
search engines have had, they have also made it increasingly
easy to plagiarize information from the Web. For instance,
a study conducted over the years 2002-2005 found that 36%
of undergraduate college students admitted to plagiarizing
information from the Web without proper citation [18] and
a study in 2010 found that 1 in 3 American high school
students admitted to plagiarizing from the Internet1.

Given the negative impact that plagiarism has on educa-
tion and society, a number of techniques have been devel-
oped for identifying cases of plagiarism [17]. Generally, the
plagiarism detection problem is framed as:

Problem 1: Given a suspicious document and a poten-
tial source document for plagiarism, find all areas of over-
lapping text, which may have been subjected to obfuscation.

A number of approaches have been developed for address-
ing Problem 1. For instance, a method based on citation
pattern matching has been developed for detecting plagia-
rism among scholarly documents [7] and many software tools
have been developed for identifying plagiarism [17]

There is an inherent assumption in the definition of Prob-
lem 1 that potential source documents for plagiarism have
been identified. For small collections of documents one might
just assume that all documents in the collection are potential
sources of plagiarism and perform a comparison between the
suspicious document and each document in the collection.
However, this approach is infeasible for all but the smallest
collections. Another task in plagiarism detection that does
not make this assumption is known as source retrieval. In
source retrieval, the goal is to use a search engine to retrieve
a subset of documents in a collection that are likely to be
sources of plagiarism by constructing queries from the suspi-
cious document that can be used to query the search engine.
The source retrieval problem can be described as:

1http://charactercounts.org/programs/reportcard/2010/
installment02 report-card honesty-integrity.html

Problem 2: Given a suspicious document and a search
engine, use the search engine to retrieve candidate docu-
ments that may be sources of plagiarism.

To address Problem 2, a function Φ(·) must be designed
such that, for a suspicious document D, Φ(D) → Q, where
Q is a set of queries that can be submitted to the search
engine. Once the set of queries is submitted to the search
engine, the search result documents can then be retrieved
and more accurate matching performed in order to check
if they are sources of plagiarism. One way of doing this is
to download the results in the order that they are ranked
by the search engine; however, there is no guarantee that
the search engine ranking reflects the probability of a result
being a source of plagiarism. Thus, documents that are not
sources of plagiarism may be downloaded and unnecessary
attempts at solving Problem 1 may take place.

This paper describes a strategy for solving Problem 2 that
attempts to minimize the number of unnecessary compar-
isons made as described above. This is done by classifying
each result returned by the queries in Q as either being a
candidate source of plagiarism or not using only the informa-
tion that is available at search time, i.e., without retrieving
the documents themselves. Furthermore, attempts are made
at ranking those results that are classified as being candi-
date sources of plagiarism in order to improve the order in
which they are retrieved. In order to do this, various fea-
tures are extracted and various methods for search engine
result classification and ranking are analyzed and compared
to a baseline method that achieved the highest F1 score in
the 2013 PAN Source Retrieval Task [23]. In summary, this
work makes two main contributions:

• It presents a novel supervised source retrieval strategy
for finding potential sources of plagiarism on the Web.

• It compares various methods for search engine result
classification for source retrieval and evaluates the fea-
tures used for this classification.

In making these contribution, the rest of this paper is
structured as follows. We first begin by discussing work re-
lated to source retrieval in Section 2. Section 3 describes the
supervised source retrieval strategy and algorithm and Sec-
tion 4 describes the creation of a data set for source retrieval
evaluation as well as set of features that can be used for su-
pervised search result classification. Section 5 describes a
set of supervised methods that were used for classifying and
ranking search results. Section 6 then presents a set of ex-
periments comparing these methods to a baseline and also
provides an evaluation of the features used for classification.
Lastly, conclusions and future work are discussed in Section
7.

2. RELATED WORK
To our knowledge, there has been no previous work on su-

pervised classification of search results as potential sources
of plagiarism; however, there has been previous research on
classifying search results in other ways. For instance, it has
been noted that the order of results returned by search en-
gines is based on relevance scores alone and may not take
the topic of documents into consideration [35]. As a re-
sult, some efforts have been made to group search engine
results into categories or clusters. For instance, [33] describe

a probabilistic ranking model that includes document cat-
egories and [26] describe an approach to presenting search
results in user defined hierarchies by classifying documents
into concepts from an ontology.

The Learning to rank machine learning framework has
been used to learn a function for re-ranking the search re-
sults returned by a search engine for a specific query [16].
For instance, the ranking may be based on user clickthrough
data [13] which can be used to infer which results are relevant
for a specific queries. Learning to rank has been applied in a
number of domains, such as learning a ranking of sponsored
search results [34] and for ranking answers in Q&A systems
[27]. [32] argue that many approaches for learning to rank
in information retrieval attempt to optimize scores such as
accuracy and ROCArea, rather than the mean average pre-
cision (MAP) score often used to evaluate information re-
trieval systems. They thus propose a method for optimizing
MAP and show how it performs better than other methods
when it comes to maximizing MAP. Supervised ensemble
ranking methods have been used to combine the ranking out-
puts from multiple ranking algorithms; however, it has been
noted that the drawback of this approach is that the learned
weights are query independent and thus semi-supervised so-
lutions for ensemble ranking have been proposed [12]. In [6],
a set of candidate answers in a bibliographic Q&A system
are re-ranked after being retrieved. This is similar to this
work where search results are retrieved, classified and then
re-ranked.

The Query By Document (QBD) search methodology is
similar to the source retrieval problem. In QBD, a user sub-
mits a whole document as a query and the QBD system re-
turns a list of documents ranked using some pre-determined
similarity function [29]. Several systems have been designed
for similar document retrieval. For instance, systems have
been developed that make use of standard search engines and
different query formulation strategies [21, 9, 3]. In each case,
queries are formulated from the input document and submit-
ted to a search engine and the results are ranked based on
some similarity metric. QBD systems have been designed
for use with full documents, passages of text [14], books [20]
and blog posts [31]. The main difference between QBD and
the source retrieval strategy described in this paper is that
QBD systems return documents that are similar to a query
document whereas we specifically focus on classifying search
results as being potential sources of plagiarism for a given
suspicious document. Furthermore, QBD systems usually
perform ranking based on the full text similarity of docu-
ments whereas we instead focus on classifying search results
based only on information that is available at search time
without retrieving the actual documents.

Commercial systems for plagiarism detection generally fo-
cus on finding the overlap among texts; however, some sys-
tems do consult external sources. For instance, the Essay
Verification Engine2 automatically constructs queries from
an input document and conducts a Web-based search to re-
trieve similar documents.

The work most similar to that described in this paper
would be the approaches used in the Source Retrieval task
at PAN 2013 [8]. In that task, the approach that achieved
the highest F1 score used a naive method for determining
whether or not a search engine result is a source of plagia-

2http://www.canexus.com/eve/abouteve.shtml

rism based on a measure of similarity between the snippet
of text associated with the result and the original suspicious
document. Other approaches were similar in that they of-
ten compared the similarity of some part of the search result
snippet with the original suspicious document and used that
to determine whether to download a document or not [23].

This work differs from existing work in that it specifically
attempts to classify and rank the search results returned by
a search engine as being sources of plagiarism using a super-
vised approach and using only features that are available at
search time.

3. SOURCE RETRIEVAL STRATEGY
Having introduced the problem and described related work,

we now describe an online source retrieval strategy that can
be used for real interaction with a search engine for retriev-
ing potential sources of plagiarism. This strategy is similar
to existing source retrieval strategies [23]; however, the main
difference is that it makes use of a supervised method for
determining which results are potential candidate sources of
retrieval. Algorithm 1 shows the source retrieval strategy
employed in this study.

Algorithm 1 General overview of source retrieval strategy

1: procedure SourceRetrieval(doc)
2: paragraphs← SplitIntoParagraphs(doc)
3: for all p ∈ paragraphs do
4: p← Preprocess(p)
5: queries← ExtractQueries(p)
6: for i = 0→ n do . n is the top n queries
7: results← SubmitQueries(queries[i])
8: end for
9: results← ClassifyAndRank(results)

10: for all result ∈ results do
11: if result is True then
12: if PreviousSource(result) = false then
13: source← Download(result)
14: if IsSource(source) then
15: print source
16: PreviousSource ← source
17: break
18: end if
19: end if
20: end if
21: end for
22: end for
23: end procedure

First the input document is split into paragraphs made up
of sentences (line 2). Then the text of each paragraph is pre-
processed to remove stop words, etc., (line 4) and queries are
extracted from the paragraph using the process described in
Section 4.2.1 (line 5). The top n queries are submitted to
the search engine and results are returned for each query
resulting in a set of search results per paragraph, which are
then classified as potential sources of plagiarism and possibly
ranked (line 9; described later). The intuition behind sub-
mitting multiple queries and combining their search results
before classifying them as sources of plagiarism is that the
probability of the union of the search results of all queries
containing a source of plagiarism is at least as high as the

Figure 1: Flow chart representation of source re-
trieval strategy

probability of the results for a single query containing a
source of plagiarism and likely higher.

If a result is classified as a source of plagiarism (line 11)
and if the result has previously not been downloaded and
identified as a source of plagiarism (based on the URL; line
12) then it is retrieved (line 13). The reason for checking
whether or not a result has previously been downloaded and
identified as a potential source of plagiarism is to prevent re-
dundant retrieval. When a document is retrieved, an Oracle
(described in the next section) is consulted to determine if
it is a source of plagiarism (line 14). If it is, then the result
is added to the set of previous successful results (line 16)
and processing for the paragraph stops (line 17), otherwise
the loop continues and the next result is processed. The
reason for stopping the loop after a positive result has been
retrieved is based on the previous intuition that a paragraph
is likely to be plagiarized from a single source and thus re-
trieving additional results will not improve performance.

Figure 1 provides a high level visualization of Algorithm
1 showing the steps involving query generation and result
submission, result classification and ranking, and the con-
trolling of downloads.

4. DATA AND FEATURES

4.1 Original Dataset
The data used in this study is based on the training data

provided as part of the Source Retrieval task at PAN 2013
[8]. The way in which this data was originally collected is de-
scribed in detail in [25] and involved crowdsourcing whereby
people were asked to write plagiarized documents on specific
topics. Two batches of plagiarized documents were created
in this way: for Batch 1 people were allowed to freely search
the ChatNoir Search Engine3 [24] to find sources for pla-
giarism whereas for Batch 2 people were provided with 20
search results on a specific topic and asked to use those re-
sults for plagiarism. The data used in this study is based on
the Batch 2, which was the only data available at the time
this study was conducted.

A total of 40 documents from Batch 2 were provided as
training data for the Source Retrieval task at PAN 2013 and
those 40 documents were used in this study. Table 1 shows
the descriptive statistics for the number of words in these
documents.

As can be seen from these statistics, the documents are
relatively long (i.e. around 5-10 pages). Twenty documents

3http://chatnoir.webis.de/

Table 1: Descriptive statistics for number of words

Min Max Mode Median Mean

1873 7335 5383 5104 5152

were randomly sampled from this collection for classification
and model training, 10 were used for validation and the re-
maining 10 documents were retained for testing. From these
documents, a search result dataset was created.

4.2 Search Result Dataset
A search result dataset was constructed by extracting a

set of queries from each document, submitting them to the
ChatNoir search engine, downloading the results, and la-
belling each result as being a source of plagiarism or not.

4.2.1 Query Generation
To generate queries from a given document, the text of

each document was first partitioned in paragraphs, with
each paragraph containing 5 sentences that were tagged by
the Stanford Tagger [28]. The words in each paragraph ex-
tracted this way were then POS-tagged using the Stanford
POS Tagger and, following [15], only nouns, verbs and adjec-
tives were retained while all words were filtered out. Queries
were then constructed from the remaining nouns, verbs and
adjectives by combining every non-overlapping sequence of
10 words, which resulted in a set of queries for each para-
graph, of which only the first three were retained while the
others were discarded. The intuition behind this is that a
paragraph is likely to be plagiarized from a single source and
that the first 3 queries from a paragraph are likely to suffi-
ciently capture enough information about the paragraph.

4.2.2 Query Submission and Result Labeling
The queries generated for each paragraph were submitted

to the ChatNoir search engine [24] and the first three results
returned by each query were retrieved. This number was se-
lected since it was empirically found to lead to good results
[30]. ChatNoir contains an Oracle that can be consulted to
determine whether or not a search result is a source of pla-
giarism for a given suspicious document ID. The Oracle is
a service provided by the PAN plagiarism detection compe-
tition organizers that provides a binary output of whether
a document is a source of plagiarism for a given suspicious
document. This label is not provided by prediction but is
stated as a fact and is meant to be used for evaluating re-
trieval methods. We use the Oracle to label each search
result appropriately.

4.2.3 Training Data
In total 2737 queries were constructed from the 20 train-

ing documents and 5740 search results were returned when
querying the search engine with these queries with each
search result being labelled based on the feedback from the
ChatNoir Oracle. Of the 5740 search results, 4240 were
labelled as negative (i.e., not sources of plagiarism) and
the remaining 1500 being labelled as sources of plagiarism.
Thus, the data was heavily skewed towards negative sam-
ples, which made up 73.87% of the data.

4.2.4 Validation Data
In total 1331 queries were constructed from the 10 val-

idation documents and 2940 search results were returned
and labelled when querying the search engine. 2365 of these
were negative samples and the remaining 575 were positive.
Negative samples made up 80.44% of the validation data.

4.2.5 Testing Dataset
A total of 1303 queries were constructed from the 10 test-

ing documents and 2991 search results were returned. 2174
of these were negative samples and the remaining 817 were
positive. Thus, the distribution of the testing data follows
a similar ratio to the training data with negative samples
making up 72.68% of the data.

4.3 Features
For each labelled search result the following features were

extracted (some of which were provided by the ChatNoir
search engine). All of these features are available at search
result time and do not require the search result to be re-
trieved, which allows for classification to be performed as
the search results become available.

1. Readability. The readability of the result document as
measured by the Flesh-Kincaid grade level formula [22]
(ChatNoir).

2. Weight. A weight assigned to the result by the search
engine (ChatNoir).

3. Proximity. A proximity factor [24] (ChatNoir).

4. PageRank. The PageRank of the result (ChatNoir).

5. BM25. The BM25 score of the result (ChatNoir).

6. Sentences. The number of sentences in the result (Chat-
Noir).

7. Words. The number of words in the result (ChatNoir).

8. Characters. The number of characters in the result (Chat-
Noir).

9. Syllables. The number of syllables in the result (Chat-
Noir).

10. Rank. The rank of the result, i.e. the rank at which it
appeared in the search results.

11. Document-snippet 5-gram Intersection. The set of
5-grams from the suspicious document are extracted as
well as the set of 5 grams from each search result snip-
pet, where the snippet is the small sample of text that
appears under each search result. A document-snippet
5-gram intersection score is then calculated as:

Sim(s, d) = S(s) ∩ S(d), (1)

where s is the snippet, d is the suspicious document
and S(·) is a set of 5-grams.

12. Snippet-document Cosine Similarity. The cosine sim-
ilarity between the snippet and the suspicious docu-
ment, which is given by:

Cosine(s, d) = cos(θ) =
Vs · Vd
||Vs||||Vd||

, (2)

where V· is a term vector.

13. Title-document Cosine Similarity. The cosine sim-
ilarity between the result title and the suspicious doc-
ument (Eq. 2).

14. Query-snippet Cosine Similarity. The cosine simi-
larity between the query and the snippet (Eq. 2).

15. Query-title Cosine Similarity. The cosine similar-
ity between the query and the result title (Eq. 2) [13].

16. Title length. The number of words in the result title.

17. Wikipedia source. Boolean value for whether or not
the source was a Wikipedia article (based on the exis-
tence of the word “Wikipedia in title).

18. #Nouns. Number of nouns in the title as tagged by
the Stanford POS Tagger [28].

19. #Verbs. Number of verbs in the title as tagged by the
Stanford POS Tagger.

20. #Adjectives Number of adjectives in the title as tagged
by the Stanford POS Tagger.

5. SEARCH RESULT CLASSIFICATION AND
RANKING

A number of different supervised classification methods
using the features and data described in the previous section
were compared. These supervised methods were also com-
pared to a baseline method. The baseline method achieved
the highest F1 score in the source retrieval task at PAN 2013
[23]. The supervised methods include: linear discriminant
analysis, logistic regression, random forests, AdaBoosting
with decision trees and ensembles of these classifiers. Rank-
ing involves determining the order in which to retrieve re-
sults that have been classified as being candidate sources of
plagiarism.

5.1 Baseline
The baseline method classifies each search result as be-

ing a potential source of plagiarism based on the document-
snippet 5-gram intersection (feature 11). Documents for
which Sim(s, d) = S(s) ∩ S(d) ≥ 5, are classified as can-
didate sources of plagiarism and documents are ranked by
Sim(s, d) in descending order. This method achieved the
highest F1 score in the source retrieval task at PAN 2013
[23].

5.2 Supervised Methods

5.2.1 Linear Discriminant Analysis
A Linear Discriminant Analysis (LDA) classifier attempts

to find a linear combination of features for classification. For
LDA, two different ranking cases are considered for LDA:
no ranking where positive results are retrieved in the order
they were classified; and ProbRank where results are ranked
by their probability of being a source of plagiarism. This
probability value is output by the classifier.

5.2.2 Logistic Regression
Logistic regression is a form of binary classification where

the classification decision is made based on:

p(~x) =
1

1 + eβ0+β1~x
, (3)

where Y = 1 is predicted when p(~x) ≥ 0.5 and Y = 0
otherwise. In this study, we use L-1 regularization when
learning the logistic regression model and, as with LDA,
both no ranking and the ProbRank ranking method are both
considered.

5.2.3 Random Forest
A random forest is an ensemble classifier made up of a

set of decision trees [1]. Each tree is built with a bootstrap
sample from the dataset and splitting in the decision tree is
based on a random subset of the features rather than the
full feature set [5]. In this study, the number of trees in
the ensemble is set to 10 since this was empirically found to
perform well and the number of features randomly selected
is equal to

√
n features. At each level in the decision trees,

variables are selected for splitting with the Gini index being
used as a splitting criterion. The Gini index is defined as
follows:

IG(i) =

K∑
j=1

pj(1− pj) = 1−
K∑
j=1

p2j , (4)

where K is the number of classes and pj is the proportion
of instances belonging to class j in node i. If a node i is
pure (only contains one type of class), then IG(i) = 0. The
Gini index is used in decision tree learning for selecting the
variable to split on at each node, with the split that leads
to the largest reduction in the Gini index being selected.

The other parameters for the decision trees in the random
forest were found using a grid search over the training set
with the validation set used for testing. The parameters
were:

• Maximum tree depth, d = None, 1, 2, 3, 4

• Minimum samples to split a node, s = 1, 2, 3, 4

• Minimum samples per leaf, l = 1, 2, 3, 4

Once the grid search was performed, the parameters that
resulted in the highest F1 score on the validation set were
used for training the final model.

As with other methods, two ranking options were con-
sidered for the random forest: the baseline ranking method
(i.e., no ranking) and ProbRank.

5.2.4 AdaBoosting with Decision Trees
AdaBoost is another ensemble method that iteratively fits

modified versions of data to a set of weak classifiers. For a
set of weak classifiers Gm(x),m = 1, 2, ...M , the prediction,
G(x), for the target value of a sample is based on a weighted
majority vote as [10]:

G(x) = sign(

M∑
m=1

αmGm(x)), (5)

where αm weighs the contribution of each classifier with
more accurate classifiers being assigned more weight. Dur-
ing training, the data is modified at each iteration. Initially,
the weight of each sample w1, w2, ..., wn is set to 1

N
; how-

ever, with each iteration these weights are modified with the
weight being increased for samples incorrectly classified and
decreased for samples correctly classified. This has the effect
of making each successive classifier focus on the incorrectly

classified examples since the error for a classifier is calcu-
lated based on these weights [10]. At the end of a training
iteration, the weight αm of a classifier Gm(x) is based on
this error rate.

The weak learners used are decision trees and the same
parameters as in the random forest were used. Similarly,
the same ranking options (no ranking and ProbRank) were
used.

5.2.5 Majority Voting Ensemble
We also experiment with a voting ensemble of the four

supervised and baseline classifiers described above. A nec-
essary condition for an ensemble of classifiers to perform
better than the individual classifiers is that the individual
classifiers are accurate and diverse [4]. In this case, the en-
semble can reduce the risk of selecting a bad classifier for a
given problem, reduce the impact of local optima, and ex-
pand the number of possible hypothesis representations [4].
In this study, we use a simple voting ensemble. In a voting
ensemble, each classifier in the ensemble individually classi-
fies a result and then casts a vote, which may or may not be
weighted. The final decision as to the class of a result can
then be based on the majority vote. We define the majority
vote M(x) among classifiers as:

M(x) =

n∑
i=1

wiCi(x), (6)

where n is the number of classifiers in the ensemble, wi
is the weight assigned to the i-th classifier and Ci(x) is the
classification produced by the i-th classifier. When M(x) >
0, the weighted majority vote is positive and thus result is
classified as a source of plagiarism. Similarity, when M(x) <
0, the result is classified as a non-source of plagiarism. In
this study, we include the top n = 3 and n = 5 classifiers
in ensembles based on their F1 score (Equation 9) and all
classifiers are weighted equally, i.e. wi = 1, i ∈ 1, 2, ...n.
Given the fact that an odd number of classifiers are used,
M(x) is guaranteed to be non-zero since the output of each
classifier is either 1 (source of plagiarism) or −1 (non-source
of plagiarism).

6. EXPERIMENTS

6.1 Experiment Methodology
The source retrieval strategy as described in Algorithm 1

was executed on the test set without classification and rank-
ing (line 9), i.e., all results were retrieved for every query,
and an interaction log was generated. The interaction log
recorded each document name, paragraph number and re-
sults for each query. This allowed for different classification
and ranking strategies to be compared without needing to
re-submit the queries to the search engine. Performance was
measured using precision, recall and the F1 score, which are
defined as follows:

Precision =
tp

tp+ fp
, (7)

Recall =
tp

tp+ fn
, (8)

F1 =
2 · Precision ·Recall
Precision+Recall

, (9)

where tp, fp and fn refer to true positives, false positives
and false negatives respectively.

Precision measures the proportion of results that were re-
trieved that were actually sources of plagiarism and thus
measures how good the algorithm is at correctly identifying
true sources of plagiarism. Recall measures the proportion
of the total number of plagiarized results that were retrieved
when the known set of plagiarized results is known. To cal-
culate recall, the set of all retrieved URLs was maintained
and once all retrieval had completed this set was compared
to the set of URLs that were known to be sources of plagia-
rism.

There is a tradeoff between precision and recall since high
precision can be achieved by only retrieving documents for
which there is high confidence that they may be sources of
plagiarism, though this comes at the cost of recall. Simi-
larly, high recall can be achieved by retrieving a large set of
documents with low precision. The tradeoff between these
two metrics is given by the F1 score, which is the harmonic
mean of the two measures.

From the perspective of plagiarism detection, it could be
argued that recall is more important than precision since
one may not mind examining a few extra documents in order
to increase the chances of retrieving a source of plagiarism.
However, at a large scale such as that of the Web, it is
important to maintain good precision so that the number
of documents that need to be analyzed in detail does not
become prohibitive.

6.2 Data Sampling
As discussed, the training data was imbalanced with neg-

ative samples making up 73.87% of the data and it has been
noted that most learning algorithms expect an equal class
distribution and do not work well on imbalanced data [11].
Over sampling the minority class has successfully been used
to address the imbalanced data problem and the SMOTE
method for oversampling [2] is used in this study. The
SMOTE method creates synthetic or artificial examples of
the minority class based on existing samples. For each sam-
ple xi, the K nearest neighbors are identified and one of
those nearest neighbors x̂i is randomly selected. The dif-
ference between xi and x̂i is then multiplied by a random
number r ∈ [0, 1] and this value is added to xi to create a
new point that falls on the line segment joining xi and x̂i
[11]:

xnew = xi + (x̂i − xi)× r. (10)

In this study, we set the number of nearest neighbors to
consider k = 3 and increase the number of positive train-
ing samples by 200%. Since the SMOTE method randomly
selects nearest neighbors, we train 5 models and the results
reported are the average of the 5 models.

6.3 Results
Experimental results are shown for 3 cases: when no rank-

ing is used; when the probabilistic outputs of the classifiers
are used for ranking; and when the ensemble method is used.

6.3.1 No Ranking
Table 2 shows the performance when no ranking is used

for the supervised methods. In this case, the results are re-
trieved in the order that they were classified as being sources
of plagiarism, which is based on the ordering produced by

Table 2: Precision, recall and the F1 score for the
baseline method and different supervised methods.
No ranking of results is used, i.e. they are retrieved
in the order they were classified.

Method Precision Recall F1 Score

Baseline 0.3735 0.8543 0.5198
LDA 0.3894 0.8803 0.5399
Logistic 0.3848 0.8629 0.5322
Random Forests (RF) 0.3625 0.8725 0.5122
AdaBoost 0.3811 0.8414 0.5246

Table 3: Precision, recall and the F1 score for the
baseline and different supervised methods. The
search results were ranked by the probabilistic out-
put of the classifiers.

Method Precision Recall F1 Score

Baseline 0.3735 0.8543 0.5198
LDA+ProbRank 0.4063 0.8681 0.5535
Logistic+ProbRank 0.4019 0.8553 0.5469
RF+ProbRank 0.3833 0.8651 0.5311
AdaBoost+ProbRank 0.4018 0.8367 0.5429

the search engine. For the baseline method, the results are
ranked and ordered by the value of their snippet-document
5-gram intersection (feature 11).

As can be seen from Table 2, the highest precision is
achieved by the LDA classifier, which is about 0.5% higher
than the second highest precision achieved by the Logistic
Regression classifier and about 1.6% higher than the pre-
cision achieved by the baseline. The highest recall is also
achieved by the LDA classifier, which beats the baseline
method by 2.6%. In fact, all of the supervised methods, ex-
cept the AdaBoost classifier achieve higher recall than the
baseline method. Similarly, all classifiers except the random
forest classifier achieve higher precision than the baseline
method. The highest F1 score, which measures the trade-
off between precision and recall, was achieved by the LDA
classifier and was just above 2% higher than the baseline.
In fact, all of the supervised method except random forests
achieve a better F1 score than the baseline method. This
comparison shows that using supervised methods to clas-
sify results as potential sources of plagiarism leads to an
improvement in performance over the baseline even though
the baseline makes use of an implicit ranking method based
on the snippet-document similarity. The next experiment
repeats this experiment with a ranking based on the proba-
bilistic outputs of the classifiers.

6.3.2 Ranking by Probabilistic Output of Classifiers
Table 3 shows the performance when ProbRank is used.

With ProbRank, the probabilistic outputs of the classifiers
are used to infer a ranking or ordering of the search results
for each paragraph, with results being ranked in terms of
their probability of being a source of plagiarism. Once again,
the baseline results are ranked and ordered by the value of
their snippet-document 5-gram intersection (feature 11) for
the baseline method.

As can be seen from Table 3, the use of ProbRank leads to
an improvement in the performance of all of the supervised

Table 4: Precision, recall and the F1 score for the
baseline and ensemble classifiers.

Method Precision Recall F1 Score

Baseline 0.3735 0.8543 0.5198
Ensemble-Top3 0.3874 0.8681 0.5357
Ensemble-Top5 0.3868 0.8825 0.5379

methods. The highest precision is achieved by LDA, and
represents an almost 2% improvement over LDA without
ProbRank and an improvement of 3.28% over the baseline.
However, this improvement in precision comes at the cost of
recall, which drops by over 1% compared to LDA with no
ProbRank, though it still performs better than the baseline
method. The F1 score is higher with ProbRank than it is
without and is an improvement on the baseline of 3.37%.
The same pattern is observed for all supervised classifiers
when ProbRank is used: ProbRank leads to an improvement
in precision at the cost of recall, though the final F1 measure
is higher. Furthermore, all supervised methods outperform
the baseline when ProbRank is used. From these results it
can be argued that ProbRank is useful for improving the
overall performance of the source retrieval strategy since it
leads to a relatively large improvement in precision. Fur-
thermore, ProbRank is a relatively simple ranking strategy
and thus it could be possible to improve the results further
with more advanced ranking strategies.

6.3.3 Voting Ensemble
Table 4 shows the performance of the majority voting en-

semble classifiers and the baseline method. The majority
voting ensembles are built with the top 3 and 5 performing
classifiers as measured by their F1 score without ranking.

As can be seen from Table 4, the use of the ensembles leads
to an improvement in precision and recall over the baseline
method. Furthermore, the ensemble consisting of all 5 clas-
sifiers leads to a slight improvement in the recall achieved by
any classifier individually both with and without ProbRank.
However, this comes at the cost of a decrease in precision.
The performance of the ensemble consisting of all 5 classi-
fiers performs similarly overall to the LDA classifier with-
out ranking though not better than LDA with ProbRank.
Given that the ensemble classifier does not lead to a large
improvement in performance suggests that the classifiers are
not sufficiently diverse to benefit from being combined in an
ensemble.

6.3.4 Discussion
Overall it was found that the supervised classification of

search results leads to an improvement in performance com-
pared to the baseline method. Classifying search results
without applying any ranking leads to similar precision while
leading to an improvement in recall. Applying ProbRank to
those results in general led to an improvement in precision,
though at a slight cost in recall. It could be argued that
recall is more important than precision for source retrieval
and that the cost of missing a true source of plagiarism ex-
ceeds the cost of mistakenly retrieving a false source. The
difference in recall between the baseline method and best
performing supervised method was 2.6%. In the testing set,
a total of 817 results were sources of plagiarism and a 2.6%
increase in recall translates into potentially retrieving 21 ad-

ditional sources of plagiarism while also improving precision.
Given the importance of plagiarism detection, an increase
in recall of only a few percent can be considered signifi-
cant since it increases the chances of identifying plagiarism.
Furthermore, at large scale, such as on the Web, a small
increase in recall may translate into a significant increase in
the number of sources of plagiarism retrieved.

6.4 Feature Analysis
Feature analysis was performed to gain insight into which

features are important for source retrieval. This analysis
provides insight into which of these features may be impor-
tant not only in classifying search results, but also in un-
derstanding what plagiarizers may consider when choosing
from which documents to plagiarize. This insight can be of
practical use in constraining the plagiarism detection search
space.

LDA was the best performing model; however, since LDA
performs dimensionality reduction, its output is difficult to
interpret. Thus, feature analysis is performed based on the
random forest model where the importance of each feature is
estimated based on the depth at which it occurs in the deci-
sion trees. This calculation is done using a built in method
for calculating feature importance in the scikit-learn ma-
chine learning toolkit [19]. The feature importances are av-
eraged for the 5 random forest models that were trained with
different synthetic data generated by the SMOTE algorithm
and are shown in ranked order in Table 5.

Table 5: Importance of different features in the ran-
dom forest

Rank No. Feature Importance

1 Doc-snippet intersection 11 0.39
2 Title-doc cosine 13 0.16
3 Wikipedia source 17 0.09
4 Snippet-doc cosine 12 0.07
5 #Adjectives 20 0.07
6 Proximity 3 0.06
7 Query-snippet cosine 14 0.03
8 Syllables 9 0.02
9 Sentences 6 0.01
10 BM25 5 0.01
11 Words 7 0.01
12 Title length 16 0.01
13 Query-title cosine 15 0.01
14 Characters 8 0.01
15 Weight 2 0.01
16 Readability 1 0.01
17 Rank 10 0.00
18 #Nouns 18 0.00
19 #Verbs 19 0.00
20 PageRank 4 0.00

An interesting observation from Table 5 is that the most
important feature in the random forest is the exact same
feature as used in the baseline method. This feature, which
measures the intersection between the 5-grams in the sus-
picious document and the snippet contributes the largest
amount to the final classification of the samples. The cosine
similarity between the title of a result and the suspicious
document is also a relatively important feature, suggesting

that the titles of plagiarized sources may be strongly re-
lated to whether or not it is used as a source of plagiarism.
This is intuitive since the title of a document is likely to be
the first thing a user considers in judging whether a Web
page is relevant to their query or not. The fact that the
Wikipedia feature is the third most important feature sug-
gests that whether or not a page is a Wikipedia page may
have an impact on whether or not it is used as a source
of plagiarism. This is intuitive since Wikipedia provides a
general and easily accessible description of many topics and
is often ranked highly in many public search engines. In-
terestingly, the number of adjectives in a search result title
is a relatively important feature and is ranked much higher
than the number of nouns. One possible reason for this is
that nouns provide high level descriptions of the concepts
of documents whereas adjectives help to better refine those
concepts, which can be useful in deciding which among sev-
eral documents on the same high level topic.

Other insights can be gained from the less important fea-
tures. For instance, the BM25 ranking method used by
the ChatNoir search engine (rank 10, feature 5) and where
among the top 3 results a result is ranked (rank 17, fea-
ture 10) do not seem to be important features. This finding
supports the hypothesis in the introduction that the order
of results returned by a search engine does not necessarily
reflect the probability of them being sources of plagiarism.
Similarly, the properties of the result document in terms of
length, readability, etc., do not seem to be important for
classification which seems to mostly rely on similarity-based
features.

Overall, this analysis provides some insight into which fea-
tures may be important to improve the performance of the
supervised methods and that can be used to inform the de-
sign of new features, i.e. the similarity between a result
snippet and the suspicious document (rank 1 & rank 4) and
the relationship between a result title and the suspicious
document. Given these findings, it may be useful to design
new similarity features that can be used to better improve
performance.

7. CONCLUSIONS
Source retrieval involves using a search engine to retrieve

potential sources of plagiarism for a given suspicious docu-
ment and can be considered as a first step in a plagiarism
detection pipeline. In this study, we investigated the use of
a supervised source retrieval strategy for classifying search
engine results as candidate sources of plagiarism using only
information available at search time. For a given suspicious
document, queries were generated automatically and were
used to query a search engine for plagiarism sources. Us-
ing this method, a search result dataset was created with
a set of features available at search time. Several different
supervised methods and ranking options were compared to
a baseline method for classifying and ranking these results.
The performance of the best performing supervised methods
were shown to improve precision by up to 3.28%, recall by
up to 2.6% and the F1 score by up to 3.37% compared to
the baseline method.

An analysis of features showed that the feature used in the
baseline was in fact the most important feature for super-
vised classification followed by the cosine similarity between
the title of a result and the suspicious document itself. Inter-
estingly, the search engine ranking of the results did not seem

to be important feature for classification, thereby suggesting
that retrieving search results in the ordering produced by a
search engine is not a good strategy for source retrieval and
plagiarism detection.

A large number of the features used in this study were
provided by the search engine; however, it generally can-
not be assumed that a search engine will return a set of
features that can be used for classification. Thus, an impor-
tant consideration for future work would be the creation of
new features for classification. Furthermore, as is currently
the case, these features would need to be derivable with-
out retrieving the search results so as to allow for real-time
results classification.

Generally, the focus in Web search is on precision since it
is desirable that relevant search results appear on the first
page. However, we argue that recall is more important for
plagiarism detection since even a small improvement in re-
call is significant. This is especially the case at Web scale
since a small increase in recall could potentially translate
into a significant number of additional sources of plagiarism
being retrieved. However, it is still important to maintain
precision so as to reduce the number of unnecessary compar-
isons made. The supervised method described in this paper
is able to achieve both better precision and recall than the
baseline method thus satisfying both of these goals.

Future work seeks to investigate how we can improve the
supervised methods by investigating additional query gen-
eration strategies and new features for supervised classifica-
tion.

Acknowledgments
We gratefully acknowledge partial support by the National
Science Foundation under Grant No. 1143921.

8. REFERENCES
[1] L. Breiman. Random Forests. Machine learning,

45(1):5–32, 2001.

[2] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer.
SMOTE: synthetic minority over-sampling technique.
Journal of Artificial Intelligence Research, 16:321–357,
2002.

[3] A. Dasdan, P. D’Alberto, S. Kolay, and C. Drome.
Automatic retrieval of similar content using search
engine query interface. In Proceeding of the 18th ACM
conference on Information and knowledge management
- CIKM ’09, pages 701–710, 2009.

[4] T. G. Dietterich. Ensemble Methods in Machine
Learning. In Proceedings of the First International
Workshop on Multiple Classifier Systems, pages 1–15.
Springer-Verlag, 2000.

[5] W. Fan. On the optimality of probability estimation
by random decision trees. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 336–341,
2004.

[6] D. Feng, D. Ravichandran, and E. Hovy. Mining and
re-ranking for answering biographical queries on the
web. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 1283–1288, 2006.

[7] B. Gipp and N. Meuschke. Citation pattern matching
algorithms for citation-based plagiarism detection. In
Proceedings of the 11th ACM symposium on Document
engineering - DocEng ’11, pages 249–258, 2011.

[8] T. Gollub, M. Potthast, A. Beyer, M. Busse,
F. Rangel, P. Rosso, E. Stamatatos, and B. Stein.
Recent Trends in Digital Text Forensics and Its
Evaluation Plagiarism Detection, Author
Identification, and Author Profiling. In Information
Access Evaluation. Multilinguality, Multimodality, and
Visualization, pages 282–302, 2013.

[9] V. Govindaraju and K. Ramanathan. Similar
Document Search and Recommendation. Journal of
Emerging Technologies in Web Intelligence,
4(1):84–93, 2012.

[10] T. Hastie, R. J. Tibshirani, and J. J. H. Friedman.
The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2009.

[11] H. He and E. Garcia. Learning from Imbalanced Data.
IEEE Transactions on Knowledge and Data
Engineering, 21(9):1263–1284, 2009.

[12] S. Hoi and R. Jin. Semi-Supervised Ensemble
Ranking. Proceedings of the AAAI Conference on
Artificial Intelligence, pages 634–639, 2008.

[13] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining - KDD ’02, pages 133–142,
2002.

[14] C.-J. Lee and W. B. Croft. Generating queries from
user-selected text. Proceedings of the 4th Information
Interaction in Context Symposium, pages 100–109,
2012.

[15] F. Liu, D. Pennell, F. Liu, and Y. Liu. Unsupervised
Approaches for Automatic Keyword Extraction Using
Meeting Transcripts. In Proceedings of Human
Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pages 620–628, 2009.

[16] T.-Y. Liu. Learning to Rank for Information Retrieval.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[17] H. Maurer, C. Media, F. Kappe, and B. Zaka.
Plagiarism - A Survey. Journal of Universal Computer
Science, 12(8):1050–1084, 2006.

[18] D. L. Mccabe. Cheating among college and university
students : A North American perspective.
International Journal for Educational Integrity,
1(1):1–11, 2004.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapear, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[20] M. Pera and Y. Ng. Brek12: A book recommender for
k-12 users. In Proceedings of the 35th international
ACM SIGIR conference on Research and development
in information retrieval, pages 1037–1038, 2012.

[21] A. Pereira and N. Ziviani. Retrieving similar
documents from the web. Journal of Web Engineering,
2(4):247–261, 2004.

[22] M. Potthast, T. Gollub, M. Hagen, J. Graß egger,
J. Kiesel, M. Michel, A. Oberländer, M. Tippmann,
A. Barrón-cedeño, P. Gupta, P. Rosso, and B. Stein.

Overview of the 4th International Competition on
Plagiarism Detection. pages 17–20, 2012.

[23] M. Potthast, M. Hagen, T. Gollub, M. Tippmann,
J. Kiesel, P. Rosso, E. Stamatatos, and B. Stein.
Overview of the 5th International Competition on
Plagiarism Detection. In CLEF 2013 Evaluation Labs
and Workshop Working Notes Papers, 2013.

[24] M. Potthast, M. Hagen, B. Stein, J. Graß egger,
M. Michel, M. Tippmann, and C. Welsch. ChatNoir:
A Search Engine for the ClueWeb09 Corpus. In
Proceedings of the 35th international ACM SIGIR
conference on Research and development in
information retrieval - SIGIR ’12, page 1004, 2012.

[25] M. Potthast, M. Hagen, M. Völske, and B. Stein.
Crowdsourcing Interaction Logs to Understand Text
Reuse from the Web. In 51st Annual Meeting of the
Association of Computational Linguistics (ACL 13),
pages 1212–1221, 2013.

[26] A. Singh and K. Nakata. Hierarchical Classification of
Web Search Results Using Personalized Ontologies
Background Document Organization. In Proceedings
of the 3rd International Conference on Universal
Access in Human-Computer Interaction, 2005.

[27] M. Surdeanu and M. Ciaramita. Learning to rank
answers on large online QA collections. In 46th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
719–727, 2008.

[28] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer. Feature-rich part-of-speech tagging with a
cyclic dependency network. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Human
Language Technology - NAACL ’03, volume 1, pages
173–180, 2003.

[29] L. Weng, Z. Li, R. Cai, Y. Zhang, Y. Zhou, L. T.
Yang, and L. Zhang. Query by document via a
decomposition-based two-level retrieval approach. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in
Information - SIGIR ’11, pages 505–514, 2011.

[30] K. Williams, H. Chen, S. Choudhury, and C. Giles.
Unsupervised Ranking for Plagiarism Source Retrieval
- Notebook for PAN at CLEF 2013. In CLEF 2013
Evaluation Labs and Workshop Working Notes
Papers, 2013.

[31] Y. Yang, N. Bansal, W. Dakka, P. Ipeirotis,
N. Koudas, and D. Papadias. Query by document. In
Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages
34–43, 2009.

[32] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’07,
2007.

[33] Q. Zhang, Y. Zhang, H. Yu, and X. Huang. Efficient
partial-duplicate detection based on sequence
matching. In Proceeding of the 33rd international
ACM SIGIR conference on Research and development
in information retrieval - SIGIR ’10, page 675, 2010.

[34] Y. Zhu, G. Wang, J. Yang, D. Wang, J. Yan, J. Hu,
and Z. Chen. Optimizing search engine revenue in
sponsored search. In Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’09,
pages 588–596, 2009.

[35] Z. Zhu, M. Levene, and I. Cox. Ranking Classes of
Search Engine Results. In KDIR, pages 294–301, 2010.

